题目内容

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(lga)+f(lg )≤2f(1),则a的取值范围是(
A.(﹣∞,10]
B.[ ,10]
C.(0,10]
D.[ ,1]

【答案】B
【解析】解:∵函数f(x)是定义在R上的偶函数,
∴f(lga)+f(lg )≤2f(1),等价为f(lga)+f(﹣lga)=2f(lga)≤2f(1),
即f(lga)≤f(1).
∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增,
∴f(lga)≤f(1)等价为f(|lga|)≤f(1).
即|lga|≤1,
∴﹣1≤lga≤1,
解得 ≤a≤10,
故选:B.
【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网