题目内容
【题目】已知函数f(x)=ex(sinx+cosx)+a,g(x)=(a2﹣a+10)ex(a为常数).
(1)已知a=0,求曲线y=f(x)在(0,f(0))处的切线方程;
(2)当0≤x≤π时,求f(x)的值域;
(3)若存在x1、x2∈[0,π],使得|f(x1)﹣g(x2)|<13﹣e 成立,求实数a的取值范围.
【答案】
(1)解:a=0时,f(x)=ex(sinx+cosx),
f′(x)=ex(sinx+cosx)+ex(cosx﹣sinx)=2excosx,
∴f′(0)=2,f(0)=1,
∴切线方程为:y﹣1=2(x﹣0),即2x﹣y﹣1=0为所求的切线方程
(2)解:由f′(x)=2excosx≥0,得0≤x≤ ,f′(x)=2excosx≤0,得 ≤x≤π.
∴y=f(x)在[0, ]上单调递增,在[ ,π]上单调递减.
∴ymax=f( )= +a.
f(0)=1+a,f(π)=﹣eπ+a<f(0),ymin=f(π)=﹣eπ+a,
∴f(x)的值域为[﹣eπ+a, +a]
(3)解:∵a2﹣a+10>0,∴g(x)在[0,π]上是增函数,
g(0)=a2﹣a+10,g(π)=(a2﹣a+10)eπ,
∴g(x)的值域为[a2﹣a+10,(a2﹣a+10)eπ].
∵a2﹣a+10﹣( +a)=(a﹣1)2+(9﹣ )>0,
依题意,a2﹣a+10﹣( +a)<13﹣ ,
即a2﹣2a﹣3<0,解得:﹣1<a<3
【解析】(1)求出原函数的导函数,得到函数在x=0时的导数,再求出f(0),然后利用直线方程的点斜式得答案;(2)由原函数的导函数的符号确定原函数的单调区间,从而求得原函数的极大值点,得到函数的最大值,再求出端点值得答案;(3)由a2﹣a+10>0,得g(x)在[0,π]上是增函数,从而求得g(x)的值域.由题意得到a2﹣a+10﹣( +a)<13﹣ ,求解关于a的不等式得答案.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的最大(小)值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.
【题目】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:
测试指标 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)试分别估计芯片甲,芯片乙为合格品的概率;
(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件芯片乙所获得的利润不少于140元的概率.
【题目】共享单车进驻城市,绿色出行引领时尚,某市有统计数据显示,2016年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示,若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”,已知在“经常使用单车用户”中有 是“年轻人”.
(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列2×2列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
年轻人 | 非年轻人 | 合计 | |
经常使用共享单车用户 | 120 | ||
不常使用共享单车用户 | 80 | ||
合计 | 160 | 40 | 200 |
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.
(参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2= ,n=a+b+c+d)