题目内容
16、用数学归纳法证明命题:
(n+1)×(n+2)×…×(n+n)=2n×1×3×…×(2n-1)
(n+1)×(n+2)×…×(n+n)=2n×1×3×…×(2n-1)
分析:本题考察的知识点是数学归纳法,要证明(n+1)×(n+2)×…×(n+n)=2n×1×3×…×(2n-1)成立,我们要先证明n=1时,等式成立,再假设n=k时,等式成立,进而求证n=k+1时,等式成立.
解答:证明:①当n=1时,左边=2,右边=21×1,等式成立;
②假设当n=k时,等式成立,
即(k+1)×(k+2)×…×(k+k)=2k×1×3×…×(2k-1)
则当n=k+1时,
左边=(k+1)×(k+2)×…×(k+k)×(k+k+1)×(k+1+k+1)
=2k×1×3×…×(2k-1)×(k+k+1)×(k+1+k+1)
=2k×1×3×…×(2k-1)×[2(k+1)-1]×(k+1)×2
=2k+1×1×3×…×(2k-1)×[2(k+1)-1]
即n=k+1时,等式也成立.
所以(n+1)×(n+2)×…×(n+n)=2n×1×3×…×(2n-1)对任意正整数都成立.
②假设当n=k时,等式成立,
即(k+1)×(k+2)×…×(k+k)=2k×1×3×…×(2k-1)
则当n=k+1时,
左边=(k+1)×(k+2)×…×(k+k)×(k+k+1)×(k+1+k+1)
=2k×1×3×…×(2k-1)×(k+k+1)×(k+1+k+1)
=2k×1×3×…×(2k-1)×[2(k+1)-1]×(k+1)×2
=2k+1×1×3×…×(2k-1)×[2(k+1)-1]
即n=k+1时,等式也成立.
所以(n+1)×(n+2)×…×(n+n)=2n×1×3×…×(2n-1)对任意正整数都成立.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关题目