题目内容

【题目】如图,四棱锥的底面是正方形,底面ABCD,点E在棱PB上.

求证:平面平面PDB

,且EPB的中点时,求AE与平面PDB所成的角的大小.

【答案】(1)见解析;(2)

【解析】

1欲证平面平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得平面PDB2,连接OE,根据线面所成角的定义可知AE与平面PDB所的角,在中求出此角即可.

1证明:四边形ABCD是正方形,

底面ABCD

平面PDB

平面平面PDB

2解:设,连接OE

平面PDBO

AE与平面PDB所的角,

E分别为DBPB的中点,

底面ABCD

底面ABCD

中,

,即AE与平面PDB所成的角的大小为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网