题目内容

精英家教网如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,BC.
(1)求证△ABC∽△ADB;
(2)若切线AP的长为12厘米,求弦AB的长.
分析:(1)根据AC为⊙O的半径,可知:∠ABC=90°,由AD⊥BP,可知:∠ABC=∠ADB,根据切线的性质知:∠ABD=∠ACB,从而可证:△ABC∽△ADB;
(2)在Rt△POA中,根据勾股定理可将OP的长求出,再根据△ABC∽△PAO,可将AB的长求出.
解答:精英家教网证明:(1)∵AC是圆O的直径
∴∠ABC=90°
∵AD⊥BP
∴∠ADB=90°∴∠ABC=∠ADB
∵PB是圆的切线
∴∠ABD=∠ACB
在△ABC和△ADB中:
∵∠ABC=∠ADB,∠ABD=∠ACB
∴△ABC∽△ADB.

(2)连接OP,在Rt△AOP中,AP=12厘米,OA=5厘米
∴OP=13厘米
∵PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,BC.
∴OP⊥AB,OP 平分AB,
∴△ABC∽△PAO
AB
AC
=
AP
OP

AB
10
=
12
13

∴AB=
120
13
厘米
点评:本题主要考查相似三角形的判定及切线性质的应用.本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网