题目内容
若a>0,b>0,则min{max(a,b,
+
)}=
.
1 |
a2 |
1 |
b2 |
3 | 2 |
3 | 2 |
分析:不妨设a≥b>0.分以下三种情况讨论:①a≥b≥
时,由
+
≤
≤b,可得max{a,b,
+
}=a≥
;②a≥
≥b时,可得max{a,b,
+
}=a≥
;
③
≥a≥b时,可得max{a,b,
+
}=
+
≥
.综上即可得出min{max(a,b,
+
)}=
.
3 | 2 |
1 |
a2 |
1 |
b2 |
2 |
b2 |
1 |
a2 |
1 |
b2 |
3 | 2 |
3 | 2 |
1 |
a2 |
1 |
b2 |
3 | 2 |
③
3 | 2 |
1 |
a2 |
1 |
b2 |
1 |
a2 |
1 |
b2 |
3 | 2 |
1 |
a2 |
1 |
b2 |
3 | 2 |
解答:解:不妨设a≥b>0.
①a≥b≥
时,∵
+
≤
≤b,∴max{a,b,
+
}=a≥
;
②a≥
≥b时,∵
≤
+
≤
,
≤
=
≤
,max{a,b,
+
}=a≥
;
③
≥a≥b时,∵
+
≥
≥
=
,∴max{a,b,
+
}=
+
≥
.
综上可知:则min{max(a,b,
+
)}=
.
故答案为
.
①a≥b≥
3 | 2 |
1 |
a2 |
1 |
b2 |
2 |
b2 |
1 |
a2 |
1 |
b2 |
3 | 2 |
②a≥
3 | 2 |
2 |
a2 |
1 |
a2 |
1 |
b2 |
2 |
b2 |
2 |
a2 |
2 | |||
|
3 | 2 |
2 |
b2 |
1 |
a2 |
1 |
b2 |
3 | 2 |
③
3 | 2 |
1 |
a2 |
1 |
b2 |
2 |
a2 |
2 | |||
|
3 | 2 |
1 |
a2 |
1 |
b2 |
1 |
a2 |
1 |
b2 |
3 | 2 |
综上可知:则min{max(a,b,
1 |
a2 |
1 |
b2 |
3 | 2 |
故答案为
3 | 2 |
点评:熟练掌握不等式的性质和分类讨论的思想方法是解题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
若a>0,b>0,则不等式-b<
<a等价于( )
1 |
x |
A、-
| ||||
B、-
| ||||
C、x<-
| ||||
D、x<-
|