搜索
题目内容
f(x)=|x-2|+x+1,若f(x)≥m对任意实数x恒成立,则实数m的取值范围是
[ ]
A.
B.
C.
D.
试题答案
相关练习册答案
A
练习册系列答案
随堂练习册课时练系列答案
中考整合集训系列答案
阳光课堂口算题系列答案
快乐每一天神算手天天练系列答案
小学教材全解全析系列答案
原创讲练测课优新突破系列答案
学优冲刺100系列答案
名校秘题小学毕业升学系统总复习系列答案
名师面对面小考满分策略系列答案
教材全解字词句篇系列答案
相关题目
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(2012•福建)函数f(x)在[a,b]上有定义,若对任意x
1
,x
2
∈[a,b],有
f(
x
1
+
x
2
2
) ≤
1
2
[f(
x
1
) +f(
x
2
) ]
则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图象是连续不断的;
②f(x
2
)在[1,
3
]上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④对任意x
1
,x
2
,x
3
,x
4
∈[1,3],有
f(
x
1
+
x
2
+
x
3
+
x
4
4
) ≤
1
4
[f(x
1
)+f(x
2
)+f(x
3
)+f(x
4
)]
其中真命题的序号是( )
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
定义:若{y|y=f(x),x∈A}=A,则f(x)称为A上的一阶回归函数;
若{y|y=f(f(x)),x∈A}=A,则f(x)称为A上的二阶回归函数;
若{y|y=f(f(f(x))),x∈A}=A,则f(x)称为A上的三阶回归函数.
下列判断正确的个数是( )
①f(x)=3-x是[1,2]上的一阶回归函数;
②
是[-1,0]上的一阶回归函数
③
是(0,+∞)上的二阶回归函数;
④
是(2,+∞)上的三阶回归函数.
A.1个
B.2个
C.3个
D.4个
定义:若{y|y=f(x),x∈A}=A,则f(x)称为A上的一阶回归函数;
若{y|y=f(f(x)),x∈A}=A,则f(x)称为A上的二阶回归函数;
若{y|y=f(f(f(x))),x∈A}=A,则f(x)称为A上的三阶回归函数.
下列判断正确的个数是( )
①f(x)=3-x是[1,2]上的一阶回归函数;
②
是[-1,0]上的一阶回归函数
③
是(0,+∞)上的二阶回归函数;
④
是(2,+∞)上的三阶回归函数.
A.1个
B.2个
C.3个
D.4个
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总