题目内容
【题目】在等比数列{an}中,a2=3,a5=81. (Ⅰ)求an;
(Ⅱ)设bn=log3an , 求数列{bn}的前n项和Sn .
【答案】解:(Ⅰ)设等比数列{an}的公比为q, 由a2=3,a5=81,得
,解得 .
∴ ;
(Ⅱ)∵ ,bn=log3an ,
∴ .
则数列{bn}的首项为b1=0,
由bn﹣bn﹣1=n﹣1﹣(n﹣2)=1(n≥2),
可知数列{bn}是以1为公差的等差数列.
∴
【解析】(Ⅰ)设出等比数列的首项和公比,由已知列式求解首项和公比,则其通项公式可求;(Ⅱ)把(Ⅰ)中求得的an代入bn=log3an , 得到数列{bn}的通项公式,由此得到数列{bn}是以0为首项,以1为公差的等差数列,由等差数列的前n项和公式得答案.
【考点精析】解答此题的关键在于理解等差数列的前n项和公式的相关知识,掌握前n项和公式:,以及对等比数列的通项公式(及其变式)的理解,了解通项公式:.
练习册系列答案
相关题目
【题目】现阶段全国多地空气质量指数“爆表”.为探究车流量与浓度是否相关,现对北方某中心城市的车流量最大的地区进行检测,现采集到月某天个不同时段车流量与浓度的数据,如下表:
车流量(万辆/小时) | |||||||
浓度 (微克/立方米) |
(1)根据上表中的数据,用最小二乘法求出关于的线性回归方程;
(2)规定当浓度平均值在,空气质量等级为优;当浓度平均值在,空气质量等级为良;为使该城市空气质量为优和良,利用该回归方程,预测要将车流量控制在每小时多少万辆内(结果以万辆做单位,保留整数).
附:回归直线方程: ,其中, .