题目内容
10.已知f(x)=$\left\{\begin{array}{l}{2x-1(x<\frac{1}{2})}\\{f(x-1)+1(x≥\frac{1}{2})}\end{array}\right.$,则f($\frac{1}{4}$)+f($\frac{7}{6}$)=( )A. | -$\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{5}{6}$ | D. | -$\frac{5}{6}$ |
分析 利用分段函数的解析式,直接求解函数值即可.
解答 解:f(x)=$\left\{\begin{array}{l}{2x-1(x<\frac{1}{2})}\\{f(x-1)+1(x≥\frac{1}{2})}\end{array}\right.$,
则f($\frac{1}{4}$)+f($\frac{7}{6}$)=$2×\frac{1}{4}-1+$f($\frac{1}{6}$)+1=$\frac{1}{2}+2×\frac{1}{6}-1$=-$\frac{1}{6}$.
故选:A.
点评 本题考查分段函数以及函数的解析式与函数值的求法,考查计算能力.
练习册系列答案
相关题目
1.已知x2+y2=a2(a>0),则|xy|的最大值为( )
A. | a2 | B. | $\frac{{a}^{2}}{2}$ | C. | $\frac{{a}^{2}}{4}$ | D. | $\frac{\sqrt{2}{a}^{2}}{2}$ |