题目内容

15.当输入的实数x∈[2,30]时,执行如图所示的程序框图,则输出的x不小于103的概率是$\frac{9}{14}$.

分析 由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于103得到输入值的范围,利用几何概型的概率公式求出输出的x不小于103的概率.

解答 解:设实数x∈[2,30],
经过第一次循环得到x=2x+1,n=2
经过第二循环得到x=2(2x+1)+1,n=3
经过第三次循环得到x=2[2(2x+1)+1]+1,n=4此时输出x
输出的值为8x+7
令8x+7≥103得x≥12
由几何概型得到输出的x不小于103的概率为P=$\frac{30-12}{30-2}$=$\frac{9}{14}$.
故答案为:$\frac{9}{14}$.

点评 解决程序框图中的循环结构时,一般采用先根据框图的流程写出前几次循环的结果,根据结果找规律,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网