ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤µÈÓÚ2$\sqrt{3}$£¬×󽹵㽫³¤Öá·ÖΪ³¤¶ÈÖ®±ÈΪ1£º3µÄÁ½¶Î£®£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôPÊÇÍÖÔ²CÉϵÚÒ»ÏóÏÞÄÚµÄÒ»µã£¬µãA£¬B·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬Ö±ÏßPAÓëyÖá½»ÓÚµãM£¬Ö±ÏßPBÓëyÖá½»ÓÚµãN£¬Èô¡÷M0AÓë¡÷N0BµÄÃæ»ýÖ®ºÍµÈÓÚ6£¬ÇóPµã×ø±ê£®
·ÖÎö £¨I£©ÓÉ×󽹵㽫³¤Öá·ÖΪ³¤¶ÈÖ®±ÈΪ1£º3µÄÁ½¶Î£¬¿ÉµÃ$\frac{a-c}{a+c}$=$\frac{1}{3}$£¬»¯Îªa=2c£®ÁªÁ¢$\left\{\begin{array}{l}{a=2c}\\{2b=2\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨II£©ÉèP£¨x0£¬y0£©£¨x0£¬y0£¾0£©£®ÔòÖ±ÏßPAµÄ·½³ÌΪ£º$y=\frac{{y}_{0}}{{x}_{0}+2}£¨x+2£©$£¬¿ÉµÃM$£¨0£¬\frac{2{y}_{0}}{{x}_{0}+2}£©$£®Í¬Àí¿ÉµÃ£ºN$£¨0£¬\frac{2{y}_{0}}{2-{x}_{0}}£©$£®ÓÚÊÇS¡÷MOA=$\frac{2{y}_{0}}{{x}_{0}+2}$£¬S¡÷NOB=$\frac{2{y}_{0}}{2-{x}_{0}}$£®¸ù¾Ý¡÷M0AÓë¡÷N0BµÄÃæ»ýÖ®ºÍµÈÓÚ6£¬¿ÉµÃ$\frac{2{y}_{0}}{{x}_{0}+2}$+$\frac{2{y}_{0}}{2-{x}_{0}}$=6£®Óë$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$£®Ôò$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$ÁªÁ¢½â³ö¼´¿É£®
½â´ð ½â£º£¨I£©¡ß×󽹵㽫³¤Öá·ÖΪ³¤¶ÈÖ®±ÈΪ1£º3µÄÁ½¶Î£¬¡à$\frac{a-c}{a+c}$=$\frac{1}{3}$£¬»¯Îªa=2c£®
ÁªÁ¢$\left\{\begin{array}{l}{a=2c}\\{2b=2\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃb=$\sqrt{3}$£¬c=1£¬a=2£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®
£¨II£©ÉèP£¨x0£¬y0£©£¨x0£¬y0£¾0£©£¬$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$£®
ÔòÖ±ÏßPAµÄ·½³ÌΪ£º$y=\frac{{y}_{0}}{{x}_{0}+2}£¨x+2£©$£¬¿ÉµÃM$£¨0£¬\frac{2{y}_{0}}{{x}_{0}+2}£©$£®
Ö±ÏßPBµÄ·½³ÌΪ£º$y=\frac{{y}_{0}}{{x}_{0}-2}£¨x-2£©$£¬¿ÉµÃN$£¨0£¬\frac{2{y}_{0}}{2-{x}_{0}}£©$£®
¡àS¡÷MOA=$\frac{1}{2}|OA||OM|$=$\frac{2{y}_{0}}{{x}_{0}+2}$£¬S¡÷NOB=$\frac{1}{2}|OB||ON|$=$\frac{2{y}_{0}}{2-{x}_{0}}$£®
¡ß¡÷M0AÓë¡÷N0BµÄÃæ»ýÖ®ºÍµÈÓÚ6£¬
¡à$\frac{2{y}_{0}}{{x}_{0}+2}$+$\frac{2{y}_{0}}{2-{x}_{0}}$=6£®
»¯Îª£º$4{y}_{0}=12-3{x}_{0}^{2}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{4{y}_{0}+3{x}_{0}^{2}=12}\\{3{x}_{0}^{2}+4{y}_{0}^{2}=12}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{x}_{0}=\frac{2\sqrt{6}}{3}}\\{{y}_{0}=1}\end{array}\right.$£¬
¡àP$£¨\frac{2\sqrt{6}}{3}£¬1£©$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢Öеã×ø±ê¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮