题目内容

已知直线l:y=kx+1,椭圆E:
(Ⅰ)若不论k取何值,直线l与椭圆E恒有公共点,试求出m的取值范围及椭圆离心率e关于m的函数关系式;
(Ⅱ)当时,直线l与椭圆E相交于A,B两点,与y轴交于点M.若,求椭圆E的方程.
【答案】分析:(Ⅰ)由直线l恒过定点M(0,1),且直线l与椭圆E恒有公共点,知点M(0,1)在椭圆E上或其内部,得,由此能求出求出m的取值范围及椭圆离心率e关于m的函数关系式.
(Ⅱ)由,消去y得.设A(x1,y1),B(x2,y2),则.M(0,1),由得x1=-2x2.由此得.从而得到椭圆E的方程.
解答:解:(Ⅰ)∵直线l恒过定点M(0,1),且直线l与椭圆E恒有公共点,
∴点M(0,1)在椭圆E上或其内部,得
解得m≥1,且m≠3.(3分)
(联立方程组,用判别式法也可)
当1≤m<3时,椭圆的焦点在x轴上,
当m>3时,椭圆的焦点在y轴上,
(6分)
(Ⅱ)由,消去y得
设A(x1,y1),B(x2,y2),则①,②.
∵M(0,1),∴由得x1=-2x2③.(9分)
由①③得④.
将③④代入②得,,解得m2=6(m2=-15不合题意,舍去).
∴椭圆E的方程为.(12分)
点评:本题考查椭圆方程的求法和求出m的取值范围及椭圆离心率e关于m的函数关系式.解题时要认真审题,合理地进行等价转化,提高解题能力和解题技巧.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网