题目内容
(2006•石景山区一模)已知数列{an}是由正整数组成的数列,a1=4,且满足lgan=lgan-1+lgb,其中b>3,n≥2,且n∈N*,则an=
=
4bn-1
4bn-1
,lim |
n→∞ |
3n-1-an |
3n-1+an |
-1
-1
.分析:由lgan=lgan-1+lgb得an=ban-1(n≥2),可判断{an}是公比为b的等比数列,可求得an,而
=
=
,可得答案.
lim |
n→∞ |
3n-1-an |
3n-1+an |
lim |
n→∞ |
3n-1-4bn-1 |
3n-1+4bn-1 |
lim |
n→∞ |
(
| ||
(
|
解答:解:lgan=lgan-1+lgb,即lgan=lgban-1,
则an=ban-1(n≥2),
{an}是由正整数组成的数列,
所以{an}是公比为b的等比数列,又a1=4,
所以an=4bn-1,
由于b>3,所以0<
<1,
所以
=
=
=-1,
故答案为:4bn-1;-1.
则an=ban-1(n≥2),
{an}是由正整数组成的数列,
所以{an}是公比为b的等比数列,又a1=4,
所以an=4bn-1,
由于b>3,所以0<
3 |
b |
所以
lim |
n→∞ |
3n-1-an |
3n-1+an |
lim |
n→∞ |
3n-1-4bn-1 |
3n-1+4bn-1 |
lim |
n→∞ |
(
| ||
(
|
故答案为:4bn-1;-1.
点评:本题考查由数列递推式求数列通项及数列极限的求法,属中档题.
练习册系列答案
相关题目