题目内容

(2006•石景山区一模)已知数列{an}是由正整数组成的数列,a1=4,且满足lgan=lgan-1+lgb,其中b>3,n≥2,且n∈N*,则an=
4bn-1
4bn-1
lim
n→∞
3n-1-an
3n-1+an
=
-1
-1
分析:由lgan=lgan-1+lgb得an=ban-1(n≥2),可判断{an}是公比为b的等比数列,可求得an,而
lim
n→∞
3n-1-an
3n-1+an
=
lim
n→∞
3n-1-4bn-1
3n-1+4bn-1
=
lim
n→∞
(
3
b
)n-1-4
(
3
b
)n-1+4
,可得答案.
解答:解:lgan=lgan-1+lgb,即lgan=lgban-1
则an=ban-1(n≥2),
{an}是由正整数组成的数列,
所以{an}是公比为b的等比数列,又a1=4,
所以an=4bn-1
由于b>3,所以0<
3
b
<1,
所以
lim
n→∞
3n-1-an
3n-1+an
=
lim
n→∞
3n-1-4bn-1
3n-1+4bn-1
=
lim
n→∞
(
3
b
)n-1-4
(
3
b
)n-1+4
=-1,
故答案为:4bn-1;-1.
点评:本题考查由数列递推式求数列通项及数列极限的求法,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网