题目内容
(2002•上海)若椭圆的两个焦点坐标为F1(-1,0),F2(5,0),长轴的长为10,则椭圆的方程为
+
=1
+
=1.
(x-2)2 |
25 |
y2 |
16 |
(x-2)2 |
25 |
y2 |
16 |
分析:依题意,可求得椭圆的中心坐标为(2,0),a=5,c=3,从而可求椭圆的方程.
解答:解:∵椭圆的两个焦点坐标为F1(-1,0),F2(5,0),长轴的长为10,
∴椭圆的中心坐标为(2,0),a=5,c=3,
∴b2=a2-c2=25-9=16.
∴椭圆的方程为
+
=1.
故答案为:
+
=1.
∴椭圆的中心坐标为(2,0),a=5,c=3,
∴b2=a2-c2=25-9=16.
∴椭圆的方程为
(x-2)2 |
25 |
y2 |
16 |
故答案为:
(x-2)2 |
25 |
y2 |
16 |
点评:本题考查椭圆的标准方程,求得椭圆的中心坐标是关键,考查分析与运算能力,属于中档题.
练习册系列答案
相关题目