题目内容

函数的定义域为,对任意,则
的解集为
A.(,1)B.(,+C.(D.(,+
B
构建函数F(x)=f(x)-(2x+4),由f(-1)=2得出F(-1)的值,求出F(x)的导函数,根据f′(x)>2,得到F(x)在R上为增函数,根据函数的增减性即可得到F(x)大于0的解集,进而得到所求不等式的解集.
解:设F(x)=f(x)-(2x+4),
则F(-1)=f(-1)-(-2+4)=2-2=0,
又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,
即F(x)在R上单调递增,
则F(x)>0的解集为(-1,+∞),
即f(x)>2x+4的解集为(-1,+∞).
故答案为B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网