题目内容

如图,四边形ABCD中,E,F分别为AC、BD的中点,设向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ),且
AB
=2
b
-
a
CD
=2k
c
+
a

(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)试用
AB
 CD
表示
EF

(3)若β为自变量,求|
EF
|的最小值f(k).
分析:(1)由
a
⊥(
b
-2
c
)
可得
a
•(
b
-2
c
)
=0,将题中向量
a
b
c
的坐标代入并利用三角恒等变换公式化简整理,可得sin(α+β)-2cos(α+β)=0,即可求得tan(α+β)的值;
(2)根据E、F分别为AC、BD的中点,利用向量线性运算法则法进行化简,即可得到
EF
=
1
2
(
AB
 +
CD
)

(3)由(2)得
EF
=
1
2
(
AB
 +
CD
)
=(kcosβ+sinβ,4cosβ-4ksinβ),根据向量模的公式结合三角恒等变换公式化简得|
EF
|2=
17
2
(k2+1)-
15
2
[2ksin2β-(1-k2)cos2β],而2ksin2β-(1-k2)cos2β=(1+k2)sin(2β-θ)(其中tanθ=
1-k2
2k
),由此可得|
EF
|2的最小值为1+k2,从而得到|
EF
|的最小值f(k)=
1+k2
解答:解:(1)由题意,可得
a
=(4cosα,sinα)
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ),
b
-2
c
=(sinβ,4cosβ)-(2cosβ,-8sinβ)
=(sinβ-2cosβ,4cosβ+8sinβ)
a
⊥(
b
-2
c
)

a
•(
b
-2
c
)
=4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,
整理,可得sinβcosα-2cosαcosβ+sinαcosβ+2sinαsinβ=0,
即sin(α+β)-2cos(α+β)=0
∴tan(α+β)=
sin(α+β)
cos(α+β)
=2.
(2)连结AF,由题意可得
EF
=
AF
-
AE
=
1
2
(
AD
+
AB
)
-
1
2
AC
=
1
2
(
AD
+
AB
-
AC
)

AD
-
AC
=
CD

EF
=
1
2
(
AD
+
AB
-
AC
)
=
1
2
(
AB
 +
CD
)

(3)∵
AB
=2
b
-
a
=2(sinβ,4cosβ)-(4cosα,sinα)=(2sinβ-4cosα,8cosβ-sinα),
CD
=2k
c
+
a
=2k(cosβ,-4sinβ)+(4cosα,sinα)=(2kcosβ+4cosα,sinα-8ksinβ),
EF
=
1
2
(
AB
 +
CD
)
=(kcosβ+sinβ,4cosβ-4ksinβ)
可得|
EF
|2=(kcosβ+sinβ)2+(4cosβ-4ksinβ)2=(k2+16)cos2β-30ksinβcosβ+(1+16k2)sin2β
∵cos2β=
1
2
(1+cos2β),sin2β=
1
2
(1-cos2β),sinβcosβ=
1
2
sin2β,
∴|
EF
|2=
1
2
(k2+16)(1+cos2β)-15ksin2β+
1
2
(1+16k2)(1-cos2β)
=
17
2
(k2+1)-
15
2
[2ksin2β-(1-k2)cos2β],
∵2ksin2β-(1-k2)cos2β=
4k2+(1-k2)2
sin(2β-θ)=(1+k2)sin(2β-θ),(tanθ=
1-k2
2k

∴当sin(2β-θ)=1时,2ksin2β-(1-k2)cos2β有最大值为1+k2
由此可得|
EF
|2=
17
2
(k2+1)-
15
2
[2ksin2β-(1-k2)cos2β]的最小值为
17
2
(k2+1)-
15
2
(k2+1)=k2+1.
因此,|
EF
|的最小值为f(k)=
k2+1
点评:本题主要考查了平面向量的数量积公式及其运算性质、向量模的公式、向量的线性运算法则和三角恒等变换公式等知识,考查了计算能力和逻辑推理能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网