ÌâÄ¿ÄÚÈÝ
2£®| A£® | $\frac{1}{4¦Ð}$ | B£® | $\frac{\sqrt{3}}{4¦Ð}$ | C£® | $\frac{\sqrt{3}}{36¦Ð}$ | D£® | $\frac{\sqrt{6}}{36¦Ð}$ |
·ÖÎö ÈçͼËùʾ£¬¡÷PACµÄÕýÊÓͼµÄ×î¸ßµãP1ΪÕý·½ÐÎCDD1C1µÄÖÐÐÄ£®Óë²àÊÓͼµÄÿһ¸ö¶¥µãÏàÁ¬ËùµÃµÄ¼¸ºÎÌåΪÈýÀâ×¶P1-P2BC£¬ÆäÖеãP2ΪÕý·½ÐÎBCC1B1µÄÖÐÐÄ£®Ìå»ýV1=$\frac{1}{3}{S}_{¡÷{P}_{1}BC}$$•\frac{1}{2}a$£®Õý·½ÌåÍâ½ÓÇòµÄÖ±¾¶ÎªÕý·½ÌåµÄ¶Ô½ÇÏߣ¬³¤¶ÈΪ$\sqrt{3}$a£¬Ìå»ýΪV2=$\frac{4}{3}¦Ð£¨\frac{\sqrt{3}}{2}a£©^{3}$£®¼´¿ÉµÃ³ö£®
½â´ð
½â£ºÈçͼËùʾ£¬¡÷PACµÄÕýÊÓͼµÄ×î¸ßµãP1ΪÕý·½ÐÎCDD1C1µÄÖÐÐÄ£®
Óë²àÊÓͼµÄÿһ¸ö¶¥µãÏàÁ¬ËùµÃµÄ¼¸ºÎÌåΪÈýÀâ×¶P1-P2BC£¬ÆäÖеãP2ΪÕý·½ÐÎBCC1B1µÄÖÐÐÄ£®
Ìå»ýV1=$\frac{1}{3}{S}_{¡÷{P}_{1}BC}$$•\frac{1}{2}a$=$\frac{1}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}a•a¡Á\frac{1}{2}a$=$\frac{1}{24}{a}^{3}$
Õý·½ÌåÍâ½ÓÇòµÄÖ±¾¶ÎªÕý·½ÌåµÄ¶Ô½ÇÏߣ¬³¤¶ÈΪ$\sqrt{3}$a£¬Ìå»ýΪV2=$\frac{4}{3}¦Ð£¨\frac{\sqrt{3}}{2}a£©^{3}$=$\frac{\sqrt{3}¦Ð{a}^{3}}{2}$£®
Ôò$\frac{{V}_{1}}{{V}_{2}}$=$\frac{\frac{1}{24}{a}^{3}}{\frac{\sqrt{3}¦Ð{a}^{3}}{2}}$=$\frac{\sqrt{3}}{36¦Ð}$£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁËÈýÊÓͼµÄÓйØÖªÊ¶¡¢ÈýÀâ×¶µÄÌå»ý¡¢Õý·½ÌåµÄÐÔÖÊ¡¢ÇòµÄÌå»ý¼ÆË㹫ʽ£¬¿¼²éÁ˿ռäÏëÏóÄÜÁ¦¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | ¼ÈÓë¦ÁµÄ´óСÓйأ¬ÓÖÓërµÄ´óСÓÐ¹Ø | |
| B£® | Óë¦Á¼°rµÄ´óС¶¼ÎÞ¹Ø | |
| C£® | Óë¦ÁµÄ´óСÓйأ¬¶øÓërµÄ´óСÎÞ¹Ø | |
| D£® | Óë¦ÁµÄ´óСÎ޹أ¬¶øÓërµÄ´óСÓÐ¹Ø |
| A£® | $\frac{1}{3}$ | B£® | $\frac{2}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{6}$ |
| A£® | -2 | B£® | -1 | C£® | -1»ò-2 | D£® | -2»ò-3 |