题目内容
若,则( )
A. B. C. D.
已知变量,满足则目标函数的最大值为( )
已知直线()与圆交于不同的两点、,是坐标原点,且有,那么的取值范围是( )
A. B. C. D.
《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖,周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能装多少斛米.”则该圆柱形容器能装米__________斛.(古制1丈=10尺,1斛=1.62立方尺,圆周率)
函数(其中)的图象不可能是( )
已知圆过两点,且圆心在上.
(1)求圆的方程;
(2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.
已知命题“若直线与平面垂直,则直线与平面内的任意一条直线垂直”,则其逆命题、否命题、逆否命题中,真命题的个数是__________.
已知椭圆经过点,且离心率.
(1)求椭圆的方程;
(2)过点能否作出直线,使与椭圆交于两点,且以为直径的圆经过坐标原点?若存在,求出直线的方程;若不存在,说明理由.
下边程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示除以的余数),若输入的m,n分别为485,135,则输出的m=( )
A. 0 B. 5 C. 25 D. 45