题目内容
(本小题满分12分)
在直角坐标系中,点P到两点
,
的距离之和等于4,设点P的轨迹为
,直线
与C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>|
|.
(Ⅰ),(Ⅱ)略.
解析:
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴
,
故曲线C的方程为.·································································· 3分
(Ⅱ)设,其坐标满足
消去y并整理得,
故.························································· 5分
若,即
.
而,
于是,
化简得,所以
.····························································· 8分
(Ⅲ)
.
因为A在第一象限,故.由
知
,从而
.又
,
故,
即在题设条件下,恒有.···························································· 12分
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目