题目内容

已知向量a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),α∈(),且a⊥b.

      (1)、求tanα的值;

(2)、求cos()的值.

 

【答案】

解:(1)∵a⊥b,∴a·b=0.而a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),

故a·b=6sin2α+5sinαcosα-4cos2α=0.……………………………………2分

由于cosα≠0,∴6tan2α+5tanα-4 =0.解之,得tanα=-,或tanα=.6分

∵α∈(),tanα<0,故tanα=(舍去).∴tanα=-.…………7分

(2)∵α∈(),∴

由tanα=-,求得=2(舍去).

,……………………………………………………12分

cos()=.……14分

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网