题目内容
【题目】如图,在斜三棱柱中,侧面与侧面都是菱形,,.
求证:;
若,求二面角的余弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ)-.
【解析】
试题分析:(Ⅰ)要证明线线垂直,一般要证线面垂直,因此要证线线垂直,题中只有两个60°角的菱形,因此有等边三角形,只要取中点为,则有CC1⊥OA,CC1⊥OB1,因此有线面垂直,从而证得题中的线线垂直;(Ⅱ)要求二面角,由己知又可得,因此以OB1,OC1,OA为正方向建立空间直角坐标系,可写出各点坐标,从而求得两平面CAB1和平面A1AB1的法向量,由法向量夹角余弦得二面角余弦,要注意二面角是锐角还是钝角.
试题解析:(Ⅰ)证明:连AC1,CB1,则
△ACC1和△B1CC1皆为正三角形.
取CC1中点O,连OA,OB1,则
CC1⊥OA,CC1⊥OB1,则
CC1⊥平面OAB1,则CC1⊥AB1. …4分
(Ⅱ)解:由(Ⅰ)知,OA=OB1=,又AB1=,
所以OA⊥OB1.如图所示,分别以OB1,OC1,OA为正方向建立空间直角坐标系,
则C(0,-1,0),B1(,0,0),A(0,0,),
设平面CAB1的法向量为m=(x1,y1,z1), 因为=(,0,-),=(0,-1,-),
所以取m=(1,-,1).
设平面A1AB1的法向量为n=(x2,y2,z2), 因为=(,0,-),= (0,2,0),
所以取n=(1,0,1).
则cosm,n===,因为二面角C-AB1-A1为钝角,
所以二面角C-AB1-A1的余弦值为-.
【题目】“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:
步数/步 | 10000以上 | ||||
男生人数/人 | 1 | 2 | 7 | 15 | 5 |
女性人数/人 | 0 | 3 | 7 | 9 | 1 |
规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.
(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记表示随机抽取3人中被系统评为“积极性”的人数,求和的数学期望.
(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为;
其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为;求的概率.