ÌâÄ¿ÄÚÈÝ
ÒÑÖªµãP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬¡£¬Pn£¨an£¬bn£©£¨nΪÕýÕûÊý£©¶¼ÔÚº¯Êýy=(1 | 2 |
£¨¢ñ£©ÈôÊýÁÐ{an}ÊǵȲîÊýÁУ¬Ö¤Ã÷£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨¢ò£©Éèan=n£¨nΪÕýÕûÊý£©£¬¹ýµãPn£¬Pn+1µÄÖ±ÏßÓëÁ½×ø±êÖáËùΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪcn£¬ÊÔÇó×îСµÄʵÊýt£¬Ê¹cn¡Üt¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£»
£¨¢ó£©¶Ô£¨¢ò£©ÖеÄÊýÁÐ{an}£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈë3k-1¸ö3£¬µÃµ½Ò»¸öеÄÊýÁÐ{dn}£¬ÉèSnÊÇÊýÁÐ{dn}µÄÇ°nÏîºÍ£¬ÊÔ̽¾¿2008ÊÇ·ñÊýÁÐ{Sn}ÖеÄijһÏд³öÄã̽¾¿µÃµ½µÄ½áÂÛ²¢¸ø³öÖ¤Ã÷£®
·ÖÎö£º£¨¢ñ£©ÈôÉèÊýÁÐ{an}µÄ¹«²îΪd£¬Ôòbn=(
)an£¬
=(
)an+1-an=(
)dΪ³£Êý£¬¼´Ö¤ÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
£¨¢ò£©Èôan=n£¬Ôòbn=(
)n£¬µÃµãPn(n£¬(
)n)£¬Pn+1(n+1£¬(
)n+1)£¬´Ó¶øµÃбÂÊkPnPn+1£¬¼´µÃÖ±ÏßPnPn+1µÄ·½³Ì£¬ÇóµÃËüÓëxÖᣬyÖáµÄ½»µãAn£¬Bn£¬µÃÊýÁÐ{cn}µÄͨÏʽ£¬{cn}µÄÔö¼õÐÔ£¬Öªcn¡Üc1=
£¬¼´µÃ×îСµÄʵÊýtµÄÖµ£®
£¨¢ó£©ÓÉan=n£¬ÖªÊýÁÐ{dn}ÖУ¬´ÓµÚÒ»Ïîa1¿ªÊ¼µ½akΪֹµÄËùÓÐÏîµÄºÍÊÇ£¨1+2+¡+k£©+£¨31+32+¡+3k-1£©£¬k=7ʱ£¬ºÍÊÇ28+
=1120£¼2008£¬k=8ʱ£¬ºÍÊÇ36+
=3315£¾2008£»2008-1120=888ÊÇ3µÄ±¶Êý£¬ËùÒÔ´æÔÚ×ÔÈ»Êým£¬Ê¹Sm=2008£»Çó³ömµÄÖµ¼´¿É£®
1 |
2 |
bn+1 |
bn |
1 |
2 |
1 |
2 |
£¨¢ò£©Èôan=n£¬Ôòbn=(
1 |
2 |
1 |
2 |
1 |
2 |
9 |
8 |
£¨¢ó£©ÓÉan=n£¬ÖªÊýÁÐ{dn}ÖУ¬´ÓµÚÒ»Ïîa1¿ªÊ¼µ½akΪֹµÄËùÓÐÏîµÄºÍÊÇ£¨1+2+¡+k£©+£¨31+32+¡+3k-1£©£¬k=7ʱ£¬ºÍÊÇ28+
37-3 |
2 |
38-3 |
2 |
½â´ð£º½â£º£¨¢ñ£©ÉèÊýÁÐ{an}µÄ¹«²îΪd£¬ÓÉÒÑÖªbn=(
)an£¬
ËùÒÔ£¬
=(
)an+1-an=(
)d£¨³£Êý£©£¬
ËùÒÔ£¬ÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
£¨¢ò£©Èôan=n£¬Ôòbn=(
)n£¬
¡àPn(n£¬(
)n)£¬Pn+1(n+1£¬(
)n+1)£¬kPnPn+1=
=-(
)n+1£¬
Ö±ÏßPnPn+1µÄ·½³ÌΪy-(
)n=-(
)n+1(x-n)£¬
ËüÓëxÖᣬyÖá·Ö±ð½»ÓÚµãAn£¨n+2£¬0£©£¬Bn(0£¬
)£¬
¡àcn=
•|OAn|•|OBn|=
£¬
cn-cn+1=
-
=
£¾0£¬
¡àÊýÁÐ{cn}ËænÔö´ó¶ø¼õС£¬
¡àcn¡Üc1=
£¬¼´×îСµÄʵÊýtµÄֵΪ
£®
£¨¢ó£©¡ßan=n£¬¡àÊýÁÐ{dn}ÖУ¬´ÓµÚÒ»Ïîa1¿ªÊ¼µ½akΪֹ£¨º¬akÏµÄËùÓÐÏîµÄºÍÊÇ£º
£¨1+2+¡+k£©+£¨31+32+¡+3k-1£©=
+
£¬
µ±k=7ʱ£¬ÆäºÍÊÇ28+
=1120£¼2008£¬
¶øµ±k=8ʱ£¬ÆäºÍÊÇ36+
=3315£¾2008£®
ÓÖÒòΪ2008-1120=888=296¡Á3£¬ÊÇ3µÄ±¶Êý£¬
ËùÒÔ´æÔÚ×ÔÈ»Êým£¬Ê¹Sm=2008£®
´Ëʱm=7+£¨1+3+32+¡+35£©+296=667£®
1 |
2 |
ËùÒÔ£¬
bn+1 |
bn |
1 |
2 |
1 |
2 |
ËùÒÔ£¬ÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
£¨¢ò£©Èôan=n£¬Ôòbn=(
1 |
2 |
¡àPn(n£¬(
1 |
2 |
1 |
2 |
(
| ||||
(n+1)-n |
1 |
2 |
Ö±ÏßPnPn+1µÄ·½³ÌΪy-(
1 |
2 |
1 |
2 |
ËüÓëxÖᣬyÖá·Ö±ð½»ÓÚµãAn£¨n+2£¬0£©£¬Bn(0£¬
n+2 |
2n+1 |
¡àcn=
1 |
2 |
(n+2)2 |
2n+2 |
cn-cn+1=
(n+2)2 |
2n+2 |
(n+3)2 |
2n+3 |
n2+2n-1 |
2n+3 |
¡àÊýÁÐ{cn}ËænÔö´ó¶ø¼õС£¬
¡àcn¡Üc1=
9 |
8 |
9 |
8 |
£¨¢ó£©¡ßan=n£¬¡àÊýÁÐ{dn}ÖУ¬´ÓµÚÒ»Ïîa1¿ªÊ¼µ½akΪֹ£¨º¬akÏµÄËùÓÐÏîµÄºÍÊÇ£º
£¨1+2+¡+k£©+£¨31+32+¡+3k-1£©=
k(k+1) |
2 |
3k-3 |
2 |
µ±k=7ʱ£¬ÆäºÍÊÇ28+
37-3 |
2 |
¶øµ±k=8ʱ£¬ÆäºÍÊÇ36+
38-3 |
2 |
ÓÖÒòΪ2008-1120=888=296¡Á3£¬ÊÇ3µÄ±¶Êý£¬
ËùÒÔ´æÔÚ×ÔÈ»Êým£¬Ê¹Sm=2008£®
´Ëʱm=7+£¨1+3+32+¡+35£©+296=667£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁÐÓ뺯ÊýµÄ×ÛºÏÓ¦ÓÃÎÊÌ⣬½âÌâʱÁé»îÓ¦ÓÃÁ˵ȱȹØϵµÄÈ·¶¨£¬ÊýÁеÄÇóºÍ¹«Ê½µÈ֪ʶ£¬ÊǽÏÄѵÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿