搜索
题目内容
椭圆
的离心率为 ( )
A.
B.
C.
D.
试题答案
相关练习册答案
A
试题分析:根据题意,由于
,可知a=2,b=1,那么可知
,故可知结论为
,选A.
点评:主要是考查了椭圆的几何性质的运用,属于基础题。
练习册系列答案
升学锦囊系列答案
师说系列答案
实验班培优训练系列答案
数理报系列答案
培优竞赛新方法系列答案
素养提升讲练系列答案
数学指导系列答案
导学与训练系列答案
导与学学案导学系列答案
地道中考系列答案
相关题目
已知椭圆
的长轴两端点分别为
,
是椭圆上的动点,以
为一边在
轴下方作矩形
,使
,
交
于点
,
交
于点
.
(Ⅰ)如图(1),若
,且
为椭圆上顶点时,
的面积为12,点
到直线
的距离为
,求椭圆的方程;
(Ⅱ)如图(2),若
,试证明:
成等比数列.
已知定圆
的圆心为
,动圆
过点
,且和圆
相切,动圆的圆心
的轨迹记为
.
(Ⅰ)求曲线
的方程;
(Ⅱ)若点
为曲线
上一点,试探究直线:
与曲线
是否存在交点? 若存在,求出交点坐标;若不存在,请说明理由.
椭圆
:
的左、右焦点分别是
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
是椭圆
上除长轴端点外的任一点,连接
,设
的角平分线
交
的长轴于点
,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点
作斜率为
的直线
,使
与椭圆
有且只有一个公共点,设直线的
斜率分别为
。若
,试证明
为定值,并求出这个定值。
已知椭圆
:
的右焦点
在圆
上,直线
交椭圆于
、
两点.
(1)求椭圆
的方程;
(2)若
(
为坐标原点),求
的值;
(3)设点
关于
轴的对称点为
(
与
不重合),且直线
与
轴交于点
,试问
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
已知点
是直线
被椭圆
所截得的线段中点,求直线
的方程。
已知
为椭圆
的左右顶点,在长轴
上随机任取点
,过
作垂直于
轴的直线交椭圆于点
,则使
的概率为
A.
B.
C.
D.
设椭圆
的左、右焦点分别为
,
上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)
是过
三点的圆上的点,
到直线
的最大距离等于椭圆长轴的长,求椭圆
的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于点
,求实数
的取值范围.
椭圆上
一动点P到两焦点距离之和为( )
A.10
B.8
C.6
D.不确定
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总