ÌâÄ¿ÄÚÈÝ
ÒÑÖªÅ×ÎïÏßy=x2ºÍÈý¸öµãM£¨x0£¬y0£©¡¢P£¨0£¬y0£©¡¢N£¨-x0£¬y0£©£¨y0¡Ùx02£¬y0£¾0£©£¬¹ýµãMµÄÒ»ÌõÖ±Ïß½»Å×ÎïÏßÓÚA¡¢BÁ½µã£¬AP¡¢BPµÄÑÓ³¤Ïß·Ö±ð½»ÇúÏßCÓÚE¡¢F£®£¨1£©Ö¤Ã÷E¡¢F¡¢NÈýµã¹²Ïߣ»
£¨2£©Èç¹ûA¡¢B¡¢M¡¢NËĵ㹲Ïߣ¬ÎÊ£ºÊÇ·ñ´æÔÚy0£¬Ê¹ÒÔÏ߶ÎABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßÓÐÒìÓÚA¡¢BµÄ½»µã£¿Èç¹û´æÔÚ£¬Çó³öy0µÄÈ¡Öµ·¶Î§£¬²¢Çó³ö¸Ã½»µãµ½Ö±ÏßABµÄ¾àÀ룻Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Éè³öA£¬B£¬E£¬FµÄ×ø±ê£¬½ø¶ø¿É±íʾ³öÖ±ÏßABµÄ·½³Ì£¬°ÑµãM´úÈ룬ÕûÀí¿ÉµÃµ½y0µÄ±í´ïʽ£¬½ø¶ø°ÑÖ±ÏßAPµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí±íʾ³öxFºÍyF£¬xEºÍyE£¬½«y0µÄ±í´ïʽ´úÈëy=
[(x1+x2)x0-y0]µÃy=y0£¬ÅжϳöNµãÔÚÖ±ÏßEFÉÏ£®
£¨2£©ÒÑÖªA¡¢B¡¢M¡¢N¹²Ïߣ¬¿É·Ö±ð±íʾ³öA£¬BµÄ×ø±êºÍÒÔABΪֱ¾¶µÄÔ²µÄ·½³Ì£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢ÇóµÃy0ºÍyµÄ¹ØϵҪʹԲÓëÅ×ÎïÏßÓÐÒìÓÚA£¬BµÄ½»µãÅжÏy0-1¡Ý0£¬½ø¶ø¿ÉÍƶϳö´æÔÚy0¡Ý1£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßÓÐÒìÓÚA£¬BµÄ½»µãTÇÒyT=y0-1½ø¶øÇóµÃ½»µãTµ½ABµÄ¾àÀ룮
y0 |
x1x2 |
£¨2£©ÒÑÖªA¡¢B¡¢M¡¢N¹²Ïߣ¬¿É·Ö±ð±íʾ³öA£¬BµÄ×ø±êºÍÒÔABΪֱ¾¶µÄÔ²µÄ·½³Ì£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢ÇóµÃy0ºÍyµÄ¹ØϵҪʹԲÓëÅ×ÎïÏßÓÐÒìÓÚA£¬BµÄ½»µãÅжÏy0-1¡Ý0£¬½ø¶ø¿ÉÍƶϳö´æÔÚy0¡Ý1£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßÓÐÒìÓÚA£¬BµÄ½»µãTÇÒyT=y0-1½ø¶øÇóµÃ½»µãTµ½ABµÄ¾àÀ룮
½â´ð£º£¨1£©Ö¤Ã÷£ºÉèA£¨x1£¬x12£©¡¢B£¨x2£¬x22£©£¬E£¨xE£¬yE£©¡¢F£¨xF£¬yF£©
ÔòÖ±ÏßABµÄ·½³Ì£ºy=
(x-x1)+
¼´£ºy=£¨x1+x2£©x-x1x2
ÒòM£¨x0£¬y0£©ÔÚABÉÏ£¬ËùÒÔy0=£¨x1+x2£©x0-x1x2¢Ù
ÓÖÖ±ÏßAP·½³Ì£ºy=
x+y0
ÓÉ
µÃ£ºx2-
x-y0=0
ËùÒÔx1+xE=
?xE=-
£¬yE=
ͬÀí£¬xF=-
£¬yF=
ËùÒÔÖ±ÏßEFµÄ·½³Ì£ºy=-(
)y0x-
Áîx=-x0µÃy=
[(x1+x2)x0-y0]
½«¢Ù´úÈëÉÏʽµÃy=y0£¬¼´NµãÔÚÖ±ÏßEFÉÏ
ËùÒÔE£¬F£¬NÈýµã¹²Ïß
£¨2£©½â£ºÓÉÒÑÖªA¡¢B¡¢M¡¢N¹²Ïߣ¬ËùÒÔA(-
£¬y0)£¬B(
£¬y0)
ÒÔABΪֱ¾¶µÄÔ²µÄ·½³Ì£ºx2+£¨y-y0£©2=y0
ÓÉ
µÃy2-£¨2y0-1£©y+y02-y0=0
ËùÒÔy=y0£¨ÉáÈ¥£©£¬y=y0-1
ҪʹԲÓëÅ×ÎïÏßÓÐÒìÓÚA£¬BµÄ½»µã£¬Ôòy0-1¡Ý0
ËùÒÔ´æÔÚy0¡Ý1£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßÓÐÒìÓÚA£¬BµÄ½»µãT£¨xT£¬yT£©
ÔòyT=y0-1£¬ËùÒÔ½»µãTµ½ABµÄ¾àÀëΪy0-yT=y0-£¨y0-1£©=1
ÔòÖ±ÏßABµÄ·½³Ì£ºy=
| ||||
x1-x2 |
x | 2 1 |
¼´£ºy=£¨x1+x2£©x-x1x2
ÒòM£¨x0£¬y0£©ÔÚABÉÏ£¬ËùÒÔy0=£¨x1+x2£©x0-x1x2¢Ù
ÓÖÖ±ÏßAP·½³Ì£ºy=
| ||
x1 |
ÓÉ
|
| ||
x1 |
ËùÒÔx1+xE=
| ||
x1 |
y0 |
x1 |
| ||
|
ͬÀí£¬xF=-
y0 |
x2 |
| ||
|
ËùÒÔÖ±ÏßEFµÄ·½³Ì£ºy=-(
x1+x2 |
x1x2 |
| ||
x1x2 |
Áîx=-x0µÃy=
y0 |
x1x2 |
½«¢Ù´úÈëÉÏʽµÃy=y0£¬¼´NµãÔÚÖ±ÏßEFÉÏ
ËùÒÔE£¬F£¬NÈýµã¹²Ïß
£¨2£©½â£ºÓÉÒÑÖªA¡¢B¡¢M¡¢N¹²Ïߣ¬ËùÒÔA(-
y0 |
y0 |
ÒÔABΪֱ¾¶µÄÔ²µÄ·½³Ì£ºx2+£¨y-y0£©2=y0
ÓÉ
|
ËùÒÔy=y0£¨ÉáÈ¥£©£¬y=y0-1
ҪʹԲÓëÅ×ÎïÏßÓÐÒìÓÚA£¬BµÄ½»µã£¬Ôòy0-1¡Ý0
ËùÒÔ´æÔÚy0¡Ý1£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßÓÐÒìÓÚA£¬BµÄ½»µãT£¨xT£¬yT£©
ÔòyT=y0-1£¬ËùÒÔ½»µãTµ½ABµÄ¾àÀëΪy0-yT=y0-£¨y0-1£©=1
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣮½âÌâµÄ¹Ø¼üÊdzä·Ö·¢»ÓÅбðʽºÍΤ´ï¶¨ÀíÔÚ½âÌâÖеÄ×÷Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÅ×ÎïÏßy=x2ÉÏÓÐÒ»¶¨µãA£¨-1£¬1£©ºÍÁ½¶¯µãP¡¢Q£¬µ±PA¡ÍPQʱ£¬µãQµÄºá×ø±êÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢£¨-¡Þ£¬-3] | B¡¢[1£¬+¡Þ£© | C¡¢[-3£¬1] | D¡¢£¨-¡Þ£¬-3]¡È[1£¬+¡Þ£© |