题目内容

已知椭圆C的焦点在x轴上,一个顶点的坐标是(0,1),离心率等于
2
5
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若
MA
=λ1
AF
MB
=λ2
BF
,求证:λ12为定值.
分析:(Ⅰ)由题意知b=1,
a2-b2
a2
=
2
5
5
,由此能够导出椭圆C的方程.
(Ⅱ)方法一:设A,B,M点的坐标分别为A(x1,y1),B(x2,y2),由
MA
=λ1
AF
,得λ12+10λ1+5-5y02=0.由
MB
=λ2
BF
得λ22+10λ2+5-5y02=0.λ1,λ2是方程x2+10x+5-5y02=0的两个根,∴λ12=-10.
方法二:设直线l的斜率为k,则直线l的方程是y=k(x-2).将直线l的方程代入到椭圆C的方程中,消去y并整理得(1+5k2)x2-20k2x+20k2-5=0.然后利用根与系数的关系证明λ12为定值.
解答:解:(Ⅰ)设椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)

则由题意知b=1.∴
a2-b2
a2
=
2
5
5

1-
1
a2
=
2
5
5
.∴a2=5.
∴椭圆C的方程为
x2
5
+y2=1

(Ⅱ)方法一:设A,B,M点的坐标分别为
A(x1,y1),B(x2,y2),M(0,y0),
又易知F点的坐标为(2,0).
MA
=λ1
AF
,∴(x1,y1-y0)=λ1(2-x1,-y1).
x1=
2λ1
1+λ1
y1=
y0
1+λ1

将A点坐标代入到椭圆方程中得:
1
5
(
2λ1
1+λ1
)2+(
y0
1+λ1
)2=1

去分母整理,得λ12+10λ1+5-5y02=0.
同理,由
MB
=λ2
BF
可得:λ22+10λ2+5-5y02=0.
∴λ1,λ2是方程x2+10x+5-5y02=0的两个根,
∴λ12=-10.
方法二:设A,B,M点的坐标分别为A
(x1,y1),B(x2,y2),M(0,y0),
又易知F点的坐标为(2,0).
显然直线l存在斜率,设直线l的斜率为k,
则直线l的方程是y=k(x-2).
将直线l的方程代入到椭圆C的方程中,
消去y并整理得(1+5k2)x2-20k2x+20k2-5=0.
x1+x2=
20k2
1+5k2
x1x2=
20k2-5
1+5k2

又∵
MA
=λ1
AF
MB
=λ2
BF

将各点坐标代入得λ1=
x1
2-x1
λ2=
x2
2-x2

λ1+λ2=
x1
2-x 1
+
x2
2-x2
=
2(x1+x2)-2x1x2
4-2(x1+x2)+x1x2
═-10
点评:本题是椭圆性质的综合应用题,解题时要注意公式的合理选取和灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网