题目内容
函数y=3x-x3在(0,+∞)上( )
A.有最大值2 | B.有最小值2 | C.有最小值-2 | D.有最大值-2 |
y′=3-3x2=3(1+x)(1-x),
令y′=0解得x=1,-1,
当x<-1时,y′<0,当-1<x<1时,y′>0,当x>1时,y′<0,
所以y=3x-x3在(0,1)上递增,在(1,+∞)上递减,
所以当x=1时函数取得极大值,也为最大值,ymax=2,无最小值,
故选A.
令y′=0解得x=1,-1,
当x<-1时,y′<0,当-1<x<1时,y′>0,当x>1时,y′<0,
所以y=3x-x3在(0,1)上递增,在(1,+∞)上递减,
所以当x=1时函数取得极大值,也为最大值,ymax=2,无最小值,
故选A.
练习册系列答案
相关题目