题目内容
用直线y=m和直线y=x将区域x+y分成若干块。现在用5种不同的颜色给这若干块染色,每块只染一种颜色,且任意两块不同色,若共有120种不同的染色方法,则实数m的取值范围是
A. | B. | C. | D. |
A
分析:由题意知Y=X与X=m两直线的交点必在Y=X这条直线上,而要想使任意两块不同色共有涂法120种,必须让直线X=m,Y=X将圆分成四块不同的面积,那么不同的涂法是5×4×3×2,要求出Y=X与圆的交点,得到结果.
解:由题意知Y=X与X=m两直线的交点必在Y=X这条直线上,
而要想使任意两块不同色共有涂法120种,
∴必须让直线X=m,Y=X将圆分成四块不同的面积,
那么不同的涂法才能是5×4×3×2=120.
要求出Y=X与圆的交点分别为(-,-)(,).
∴-≤m≤,
∵当m=或-时,两直线只能把该圆分成三个区域,
∴不成立,
∴-<m<.
故答案为:A
练习册系列答案
相关题目