题目内容
已知数列的前项和满足:(为常数,(1)求的通项公式;(2)设,若数列为等比数列,求的值。
(1)(2)
解析
已知数列满足.(1)求证:数列是等比数列,并求数列的通项公式;(2)设,数列的前项和为,求证:对任意,有成立.
已知数列的首项。(1)求证:是等比数列,并求出的通项公式;(2)证明:对任意的;(3)证明:。
若正项数列满足条件:存在正整数,使得对一切都成立,则称数列为级等比数列.(1)已知数列为2级等比数列,且前四项分别为,求的值;(2)若为常数),且是级等比数列,求所有可能值的集合,并求取最小正值时数列的前项和;(3)证明:为等比数列的充要条件是既为级等比数列,也为级等比数列.
(2014·随州模拟)已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.(1)求数列{an}的通项公式.(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
等比数列的各项均为正数,且(1)求数列的通项公式;(2)设 求数列的前n项和.
对任意实数列,定义它的第项为,假设是首项是公比为的等比数列.(1)求数列的前项和;(2)若,,.①求实数列的通项;②证明:.
已知数列{an}的前n项和为Sn,且有a1=2,Sn=2an-2.(1)求数列an的通项公式;(2)若bn=nan,求数列{bn}的前n项和Tn.
如果等比数列的前项和,则常数