题目内容
【题目】已知向量且函数,若函数f(x)的图象上两个相邻的对称轴距离为.
(1)求函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移个单位后,得到函数y=g(x)的图象,求函数g(x)的表达式并其对称轴;
(3)若方程f(x)=m(m>0)在时,有两个不同实数根x1,x2,求实数m的取值范围,并求出x1+x2的值.
【答案】(1);(2), 对称轴为;(3),,.
【解析】
(1) 根据向量和函数,利用数量积结合倍角公式和辅助角法得到,,再根据函数f(x)的图象上两个相邻的对称轴距离为求解.
(2)依据左加右减,将函数y=f(x)的图象向左平移个单位后,得到函数,令求其对称轴.
(3)作出函数f(x)在上图象,根据函数y=f(x)与直线y=m在上有两个交点求解.再令,求对称轴.
(1),
∵函数f(x)的图象上两个相邻的对称轴距离为,
∴,
∴,
∴ω=1,
故函数f(x)的解析式为;
(2)依题意,,
令,则,
∴函数g(x)的对称轴为;
(3)∵,
∴,
∴,
函数f(x)在上的草图如下,
依题意,函数y=f(x)与直线y=m在上有两个交点,则,
令,则,
∴函数f(x)在上的对称轴为,则.
【题目】甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表,某同学根据表中数据分析得出的结论正确的是( )
班级 | 参加人数 | 中位数 | 方差 | 平均数 |
甲 | 55 | 149 | 191 | 135 |
乙 | 55 | 151 | 110 | 135 |
A.甲、乙两班学生成绩的平均数相同
B.甲班的成绩波动比乙班的成绩波动大
C.乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)
D.甲班成绩的众数小于乙班成绩的众数
【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:
日均派送单数 | 52 | 54 | 56 | 58 | 60 |
频数(天) | 20 | 30 | 20 | 20 | 10 |
回答下列问题:
①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出这100天中甲、乙两种方案的日薪平均数及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据: , , , , , , , , )
【答案】(1);(2)见解析
【解析】试题分析:(1)甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元. 求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,由此可求出这100天中甲方案的日薪平均数及方差:同理可求出这100天中乙两种方案的日薪平均数及方差,
②不同的角度可以有不同的答案
试题解析:((1)甲方案中派送员日薪(单位:元)与送货单数的函数关系式为: ,
乙方案中派送员日薪(单位:元)与送单数的函数关系式为:
,
(2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则
,
,
乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则
,
②、答案一:
由以上的计算可知,虽然,但两者相差不大,且远小于,即甲方案日薪收入波动相对较小,所以小明应选择甲方案.
答案二:
由以上的计算结果可以看出, ,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案.
【题型】解答题
【结束】
20
【题目】已知椭圆: 的左、右焦点分别为, ,且离心率为, 为椭圆上任意一点,当时, 的面积为1.
(1)求椭圆的方程;
(2)已知点是椭圆上异于椭圆顶点的一点,延长直线, 分别与椭圆交于点, ,设直线的斜率为,直线的斜率为,求证: 为定值.