题目内容
10.已知点A(3,2),F是抛物线y2=2x的焦点,若点P在抛物线上运动,当|PA|+|PF|取最小值时,点P的坐标为(2,2).分析 设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|进而把问题转化为求|PA|+|PD|取得最小,进而可推断出当D,P,A三点共线时|PA|+|PD|最小,即可得到结论..
解答 解:设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小
当D,P,A三点共线时|PA|+|PD|最小,
∵A(3,2),∴P点的纵坐标y=2,
此时由y2=2x得x=$\frac{{2}^{2}}{2}=2$,
即P(2,2),
故答案为:(2,2)
点评 本题主要考查了抛物线的应用.考查了学生数形结合的思想和抛物线定义的应用,利用抛物线的定义是解决本题的关键.
练习册系列答案
相关题目
12.如果函数y=3sin(2x+φ)的图象关于直线x=$\frac{π}{6}$对称,则|φ|的最小值为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
5.抛物线y2=2px上横坐标为6的点到此抛物线焦点的距离为10,则该抛物线的焦点到准线的距离为( )
A. | 4 | B. | 8 | C. | 16 | D. | 32 |