题目内容
9.求导数:y=$\frac{{x}^{2}}{x+3}$.分析 利用导数的运算法则即可得出.
解答 解:y′=$\frac{2x(x+3)-{x}^{2}}{(x+3)^{2}}$=$\frac{{x}^{2}+6x}{(x+3)^{2}}$.
点评 本题考查了导数的运算法则,属于基础题.
练习册系列答案
相关题目
1.已知椭圆C:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1的右焦点为F,定点A(4,1),P是椭圆C上的动点,则|PA|+|PF|的取值范围是( )
A. | [10-$\sqrt{65}$,10+$\sqrt{65}$] | B. | [2,18] | C. | [$\frac{13}{5}$,9+$\sqrt{82}$] | D. | [10-$\sqrt{65}$,10] |