题目内容

设Sn,Tn分别为下列表格中的两个等差数列{an},{bn}的前n项和.

n

1

2

3

4

5

6

7

an

5

3

1

-1

-3

-5

-7

bn

-14

-10

-6

-2

2

6

10

(1)请求出S1,S2,S4,S5和T2,T3,T5,T6

(2)根据上述结果,对于存在正整数k满足ak+ak+1=0的等差数列{an}的前n项和Sn(n≤2k-1)的规律,猜想一个正确的结论,并加以证明.

 

解:(1)数列{an}中,a1=5,公差d=-2.

∴Sn=na1+d=5n+×(-2)=-n2+6n,

∴S1=5,S2=8,S4=8,S5=5.                                                        

数列{bn}中,b1=-14,d′=4.∴Tn=-14n+×4=2n2-16n,

∴T2=-24,T3=-30,T5=-30,T6=-24.                                                

(2)若ak+ak+1=0,则Sk+n=Sk-n(或Sn=S2k-n)(n≤2k-1,k>n).

证明如下:∵{an}是等差数列,

∴Sk-n-Sk+n=(k-n)a1+d-(k+n)a1

=-2na1+[(k-n)2-k+n-(k+n)2+k+n]

=-2na1+(k2-2kn+n2+n-k2-2kn-n2+n)

=-2na1+(-4kn+2n)=-2na1+dn(1-2k).                                          

又∵ak+ak+1=0,∴a1+(k-1)d+a1+kd=0,d=,

∴Sk-n-Sk+n=-2na1+(1-2k)=0,即Sk-n=Sk+n.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网