题目内容
设Sn,Tn分别为下列表格中的两个等差数列{an},{bn}的前n项和.
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
an | 5 | 3 | 1 | -1 | -3 | -5 | -7 | … |
bn | -14 | -10 | -6 | -2 | 2 | 6 | 10 | … |
(1)请求出S1,S2,S4,S5和T2,T3,T5,T6;
(2)根据上述结果,对于存在正整数k满足ak+ak+1=0的等差数列{an}的前n项和Sn(n≤2k-1)的规律,猜想一个正确的结论,并加以证明.
解:(1)数列{an}中,a1=5,公差d=-2.
∴Sn=na1+d=5n+×(-2)=-n2+6n,
∴S1=5,S2=8,S4=8,S5=5.
数列{bn}中,b1=-14,d′=4.∴Tn=-14n+×4=2n2-16n,
∴T2=-24,T3=-30,T5=-30,T6=-24.
(2)若ak+ak+1=0,则Sk+n=Sk-n(或Sn=S2k-n)(n≤2k-1,k>n).
证明如下:∵{an}是等差数列,
∴Sk-n-Sk+n=(k-n)a1+d-(k+n)a1
=-2na1+[(k-n)2-k+n-(k+n)2+k+n]
=-2na1+(k2-2kn+n2+n-k2-2kn-n2+n)
=-2na1+(-4kn+2n)=-2na1+dn(1-2k).
又∵ak+ak+1=0,∴a1+(k-1)d+a1+kd=0,d=,
∴Sk-n-Sk+n=-2na1+(1-2k)=0,即Sk-n=Sk+n.
练习册系列答案
相关题目