题目内容

已知数列{an}的前n项和Sn=n (2n-1),(n∈N*)
(1)证明数列{an}为等差数列;
(2)设数列{bn} 满足bn=S1+
S2
2
+
S3
3
+…+
Sn
n
(n∈N*),试判定:是否存在自然数n,使得bn=900,若存在,求出n的值;若不存在,说明理由.
(1)当n≥2时,an=Sn-Sn-1=n(2n-1)-(n-1)(2n-3)=4n-3,
当n=1时,a1=S1=1,适合.∴an=4n-3,
∵an-an-1=4(n≥2),∴an为等差数列.
(2)由题意知,
Sn
n
=2n-1

∴bn=S1+
S2
2
+
S3
3
++
Sn
n
=1+3+5+7++(2n-1)=n2

由n2=900,得n=30,即存在满足条件的自然数,且n=30.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网