题目内容
4.若函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,则$\frac{f(x)+f(-x)}{2x}<0$的解集为( )A. | (-3,3) | B. | (-3,0)∪(3,+∞) | C. | (-∞,-3)∪(0,3) | D. | (-∞,-3)∪(3,+∞) |
分析 利用函数的奇偶性将不等式进行化简,然后利用函数的单调性确定不等式的解集.
解答 解:因为y=f(x)为偶函数,所以$\frac{f(x)+f(-x)}{2x}=\frac{2f(x)}{2x}=\frac{f(x)}{x}<0$,
所以不等式等价为$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.或\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$.
因为函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,
所以解得x>3或-3<x<0,
即不等式的解集为(-3,0)∪(3,+∞).
故选:B.
点评 本题主要考查函数奇偶性的应用,利用数形结合的思想是解决本题的关键.
练习册系列答案
相关题目
14.在正方体ABCD-A1B1C1D1中,下列几种说法不正确的是( )
A. | A1C1⊥BD | B. | D1C1∥AB | ||
C. | 二面角A1-BC-D的平面角为45° | D. | AC1与平面ABCD所成的角为45° |
15.设命题p:?x∈R,x2-4x+2m≥0(其中m为常数)则“m≥1”是“命题p为真命题”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分且必要条件 | D. | 既不充分也不必要条件 |
12.已知函数f(x)为奇函数,当x≥0时,f(x)=cosx,则$f(-\frac{π}{6})$=( )
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
9.A为直线3x+4y=10上的一动点,过A作圆x2+y2=1的两条切线,切点分别为P,Q,则四边形OPAQ的面积的最小值是( )
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | 2 | D. | 4 |
16.已知奇函数f(x)是定义在(-2,2)上的减函数,若f(m-1)+f(1-2m)>0,则实数m取值范围为( )
A. | m>0 | B. | 0<m<$\frac{3}{2}$ | C. | -1<m<3 | D. | -<m<$\frac{3}{2}$ |