题目内容
【题目】已知双曲线,过点作直线与双曲线交于两点,使点是线段的中点,那么直线的方程为
A. B. C. D. 不存在
【答案】D
【解析】分析:首先利用直线所过的点将直线方程设出来,要分直线的斜率存在与不存在两种情况,联立消元,化为关于x的一元二次方程,通过有两个交点,得到判别式大于零,求得斜率的取值范围,再借助于中点坐标,结合韦达定理,得到斜率所满足的等量关系式,求得结果后要判断是否在相应的范围内,从而求得结果.
详解:根据题意,设过点的直线方程为或,当存在时,有,得(),当直线与双曲线有两个不同交点时,必有,解得,
又方程()的两个不同的根是两交点的横坐标,所以,又为线段AB的中点,所以,即,解得,不满足,当直线为时不满足条件,所以符合条件的直线不存在,故选D.
练习册系列答案
相关题目