题目内容

经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(1)T表示为X的函数;

(2)根据直方图估计利润T不少于57 000元的概率;

(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X[100,110),则取X105,且X105的概率等于需求量落入[100,110)的频率),求T的数学期望.

 

(1) T(2)0.7(3) 59400

【解析】(1)X[100,130)时,

T500X300(130X)800X39 000.

X[130,150]时,T500×13065 000.

所以T

(2)(1)知利润T不少于57 000元当且仅当120≤X≤150.

由直方图知需求量X[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.

(3)依题意可得T的分布列为

T

45 000

53 000

61 000

65 000

P

0.1

0.2

0.3

0.4

所以E(T)45 000×0.153 000×0.261 000×0.365 000×0.459400.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网