题目内容

函数是定义在上的偶函数,且对任意的,都有.当时,.若直线与函数的图象有两个不同的公共点,则实数的值为(       )

A. B. 
C. D. 

C

解析试题分析:解:因为函数f(x)是定义在R上的偶函数,设x∈[-1,0],则-x∈[0,1],于是f(x)=(-x)2=x2
设x∈[1,2],则(x-2)∈[-1,0].于是,f(x)=f(x-2)=(x-2)2
①当a=0时,联立y="x," y=x2,解得x=0,y=0,或x=y=1,即当a=0时,即直线y=x+a与函数y=f(x)的图象有两个不同的公共点.
②当-2<a<0时,只有当直线y=x+a与函数f(x)=x2在区间[0,1)上相切,且与函数f(x)=(x-2)2在x∈[1,2)上仅有一个交点时才满足条件.由f(x)=2x=1,解得x= ∴y=()2=,故其切点为(,)
),∴a=-=-由y=x-, y=(x-2)2(1≤x<2)解之得x= 综上①②可知:直线y=x+a与函数y=f(x)在区间[0,2)上的图象有两个不同的公共点时的a的值为0或- 又函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x),实数a的值为,(n∈Z).故应选C.
考点:函数的奇偶性、周期性
点评:此题考查了函数的奇偶性、周期性及导数的应用,用到了数形结合的思想方法

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网