题目内容

(2012•汕头二模)已知函数f(x)由下表定义
x 2 5 3 1 4
f(x)
π
2
0
sinxdx
2 3 4 5
若a0=5,an+1=f(an),n∈N,则a2012=
5
5
分析:先计算出an的几个值,找出规律,即函数的周期,即可求出a2012值.
解答:解:∵a0=5,∴a1=f(5)=2,
∴a2=f(2)=
π
2
0
sinxdx

=-cos
x|
π
2
0
=1,
∴a3=f(1)=4,
∴a4=f(4)=5,
由以上可知:an+4=an,(n∈N),
∴a2012=a503×4+0=a0=5.
故答案为5.
点评:本题考查了数列的函数特性,考查了函数的周期性,深刻理解函数的周期性是解决好本题的关键,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网