题目内容

(2012•汕头二模)已知函数f(x)=2cos2
x
2
-
3
sinx

(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若a为第二象限角,且f(a-
π
3
)=
1
3
,求
cos2a
1-tana
的值.
分析:(Ⅰ)利用二倍角公式及辅助角公式化简函数,从而可求函数f(x)的最小正周期和值域;
(Ⅱ)利用f(a-
π
3
)=
1
3
,求得cosα的值,利用α为第二象限角,可求sinα的值,进而可得
cos2a
1-tana
的值.
解答:解:(Ⅰ)f(x)=2cos2
x
2
-
3
sinx
=1+cosx-
3
sinx
=1+2cos(x+
π
3

∴函数f(x)的周期为2π,
∵2cos(x+
π
3
)∈[-2,2],∴函数的值域为[-1,3].                      …(5分)
(Ⅱ)因为f(a-
π
3
)=
1
3
,所以1+2cosα=
1
3
,即cosα=-
1
3
.                            …(6分)
因为α为第二象限角,所以sinα=
2
2
3
.      
所以
cos2a
1-tana
=cosα(cosα+sinα)=-
1
3
×(-
1
3
+
2
2
3
)=
1-2
2
9
                     …(13分)
点评:本题考查三角函数的化简,考查函数的性质,考查函数值的计算,解题的关键是化简函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网