题目内容

如图,已知边长都为1正方形ABCD与正方形ABEF,∠DAF=90°,M,N分别是对角线AC和BF上的点,且AM=FN=a(0<a<
2
)

(1)求证:MN平面BCE;
(2)求MN的最小值.
(1)证明:过M作MP⊥AB,垂足为P,连接PN.
AM
MC
=
AP
PB
,又
AM
MC
=
FN
NB

AP
PB
=
FN
NB
[(2分)]
∴PNAF
∴平面MPN平面CBE[(4分)]
从而MN平面BCE[(6分)]
(2)∠MPN=90°MP=
2
2
a,PN=1-
2
2
a
[(8分)]
由勾股定理知:MN2=MP2+PN2=a2-
2
a+1=(a-
2
2
)2+
1
2
[(10分)]
a=
2
2
a
时,MN的最小值为
2
2
.[(12分)]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网