题目内容
在△ABC中,角A,B,C所对边分别为a,b,c,且.
(Ⅰ)求角A;
(Ⅱ)若m,n,试求|mn|的最小值.
【解析】(I)把切化成弦,然后根据正弦定理,把等号右边的边的比,转化为对应的角的正弦的比,再借助诱导公式求A.
(II)根据第(I)问求出的A角,然后把C角用B角来表示,再借助向量表示成关于角B的函数,然后根据三角函数的知识求最小值即可.
【答案】
(I),即,
∴,∴. ∵,∴.……………(6分)
(II)mn ,
|mn|.
∵,∴,∴,且.从而.
∴当=1,即时,|mn|取得最小值.
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
3 |
3 |
A、a=c |
B、b=c |
C、2a=c |
D、a2+b2=c2 |