题目内容

已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0,]都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由。

符合题目要求的m的值存在,其取值范围是m>4-2.


解析:

f(x)是R上的奇函数,且在[0,+∞)上是增函数,∴f(x)是R上的增函数。于是不等式可等价地转化为f(cos2θ-3)>f(2mcosθ-4m),

即cos2θ-3>2mcosθ-4m,即cos2θmcosθ+2m-2>0。

t=cosθ,则问题等价地转化为函数

g(t)=t2mt+2m-2=(t)2+2m-2在[0,1]上的值恒为正,又转化为函数g(t)在[0,1]上的最小值为正。

∴当<0,即m<0时,g(0)=2m-2>0m>1与m<0不符;

当0≤≤1时,即0≤m≤2时,g(m)=-+2m-2>0

4-2<m<4+2,∴4-2<m≤2.

>1,即m>2时,g(1)=m-1>0m>1  ∴m>2

综上,符合题目要求的m的值存在,其取值范围是m>4-2.

另法(仅限当m能够解出的情况)  cos2θmcosθ+2m-2>0对于θ∈[0,]恒成立,

等价于m>(2-cos2θ)/(2-cosθ) 对于θ∈[0,]恒成立

∵当θ∈[0,]时,(2-cos2θ)/(2-cosθ) ≤4-2

∴m>4-2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网