题目内容
(01全国卷理)(14分)
设f (x) 是定义在R上的偶函数,其图像关于直线x = 1对称.对任意x1,x2∈[0,]都有f (x1+x2) = f (x1) ? f (x2).且f (1) = a>0.
(Ⅰ)求f () 及f ();
(Ⅱ)证明f (x) 是周期函数;
(Ⅲ)记an = f (2n+),求.
解析:(Ⅰ)解:因为对x1,x2∈[0,],都有f (x1+x2) = f (x1) ? f (x2),所以
f () ? f ()≥0,x∈[0,1].
∵ f () = f () ? f () = [f ()]2,
f ()f () = f () ? f () = [f ()]2. ……3分
,
∴ f (),f (). ……6分
(Ⅱ)证明:依题设y = f (x)关于直线x = 1对称,
故 f (x) = f (1+1-x),
即f (x) = f (2-x),x∈R. ……8分
又由f (x)是偶函数知f (-x) = f (x) ,x∈R,
∴ f (-x) = f (2-x) ,x∈R,
将上式中-x以x代换,得
f (x) = f (x+2),x∈R.
这表明f (x)是R上的周期函数,且2是它的一个周期. ……10分
(Ⅲ)解:由(Ⅰ)知f (x)≥0,x∈[0,1].
∵ f ()= f (n ?) = f (+(n-1)?)
= f () ? f ((n-1)?)
= f () ? f () ? … ?f ()
= [ f ()]n,
f () = ,
∴ f () = .
∵ f (x)的一个周期是2,
∴ f (2n+) = f (),因此an = , ……12分
∴ () = 0. ……14分