题目内容
等差数列{an}中,已知a1=3,a4=12,(I)求数列{an}的通项公式;
(Ⅱ)若a2,a4分别为等比数列{bn}的第1项和第2项,试求数列{bn}的通项公式及前n项和Sn.
分析:(I)求数列{an}的通项公式,由等差数列{an}中,已知a1=3,a4=12,先求出公差d,再依据等差数列的通项公式求其通项即可.
(Ⅱ)若a2,a4分别为等比数列{bn}的第1项和第2项,由此即可求出等比数列的首项与公比,再由公式求出其通项公式及前n项和Sn.
(Ⅱ)若a2,a4分别为等比数列{bn}的第1项和第2项,由此即可求出等比数列的首项与公比,再由公式求出其通项公式及前n项和Sn.
解答:解:(I)设数列{an}的公差为d,
由已知有
(2分)
解得d=3(4分)
∴an=3+(n-1)3=3n(6分)
(Ⅱ)由(I)得a2=6,a4=12,则b1=6,b2=12,(8分)
设bn的公比为q,则q=
=2,(9分)
从而bn=6•2n-1=3•2n(11分)
所以数列{bn}的前n项和sn=
=6(2n-1)(12分)
由已知有
|
解得d=3(4分)
∴an=3+(n-1)3=3n(6分)
(Ⅱ)由(I)得a2=6,a4=12,则b1=6,b2=12,(8分)
设bn的公比为q,则q=
b2 |
b1 |
从而bn=6•2n-1=3•2n(11分)
所以数列{bn}的前n项和sn=
6(1-2n) |
1-2 |
点评:本题考查等差数列与等比数列的综合,熟知等差数列与等比数列的性质是求解本题的关键,本题属于考查基本公式型的题,思维难度相对较低.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目