题目内容
数列{an}满足a1=1,an+1=an+n+1(n∈N*),则
+
+…+
等于( )
1 |
a1 |
1 |
a2 |
1 |
a2013 |
A.
| B.
| C.
| D.
|
由an+1=an+n+1得,an+1-an=n+1,
则a2-a1=1+1,
a3-a2=2+1,
a4-a3=3+1,
…
an-an-1=(n-1)+1,
以上等式相加,得an-a1=1+2+3+…+(n-1)+n-1,
把a1=1代入上式得,an=1+2+3+…+(n-1)+n=
,
∴
=
=2(
-
),
∴
+
+…+
=2[(1-
)+(
-
)+…+(
-
)]
=2(1-
)=
,
故选C.
则a2-a1=1+1,
a3-a2=2+1,
a4-a3=3+1,
…
an-an-1=(n-1)+1,
以上等式相加,得an-a1=1+2+3+…+(n-1)+n-1,
把a1=1代入上式得,an=1+2+3+…+(n-1)+n=
n(1+n) |
2 |
∴
1 |
an |
2 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴
1 |
a1 |
1 |
a2 |
1 |
a2013 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
2013 |
1 |
2014 |
=2(1-
1 |
2014 |
2013 |
1007 |
故选C.
练习册系列答案
相关题目