题目内容
若双曲线与圆x2+y2=1有公共点,则实数k的取值范围为 .
【答案】分析:假设双曲线与圆x2+y2=1没有公共点,求出k的范围,然后再求补集即可;由双曲线与圆x2+y2=1没有公共点知圆半径的长小于双曲线的实半轴的长,由此可以求出实数k的取值范围.
解答:解:s设双曲线与圆x2+y2=1没有公共点,
∴|3k|>1,∴.
∴双曲线与圆x2+y2=1有公共点,则实数k的取值范围为实数k的取值范围为[-,0)∪(0,].
故答案为[-,0)∪(0,].
点评:本题考查了双曲线的简单性质,熟练掌握圆和双曲线的图象和性质即可顺利求解.
解答:解:s设双曲线与圆x2+y2=1没有公共点,
∴|3k|>1,∴.
∴双曲线与圆x2+y2=1有公共点,则实数k的取值范围为实数k的取值范围为[-,0)∪(0,].
故答案为[-,0)∪(0,].
点评:本题考查了双曲线的简单性质,熟练掌握圆和双曲线的图象和性质即可顺利求解.
练习册系列答案
相关题目