题目内容
16.已知数列{an}满足:a1=a∈(0,1),且0<an+1≤an2-an3,设bn=(an-an+1)an+1(Ⅰ)比较a1-a2和$\frac{{a}_{2}}{{a}_{1}}$的大小;
(Ⅱ)求证:$\sqrt{\frac{{b}_{1}{b}_{2}…{b}_{n}}{{a}_{1}{a}_{2}…{a}_{n}}}$>an+1;
(Ⅲ)设Tn为数列{bn}的前n项和,求证:Tn<$\frac{{a}^{2}}{5}$.
分析 (I)作差a1-a2-$\frac{{a}_{2}}{{a}_{1}}$=$\frac{{a}_{1}^{2}-{a}_{1}{a}_{2}-a}{{a}_{1}}$≥$\frac{{a}_{1}^{3}-{a}_{1}{a}_{2}}{{a}_{1}}$=${a}_{1}^{2}-{a}_{2}$$≥{a}_{1}^{3}$,即可得出;
(II)由an>0,可得$0<\frac{{a}_{n+1}}{{a}_{n}}$$≤{a}_{n}-{a}_{n}^{2}$$≤\frac{1}{4}$.可得${a}_{n+1}≤\frac{1}{4}{a}_{n}<{a}_{n}$,${a}_{n+1}<{a}_{n}^{2}-{a}_{n}^{3}$<${a}_{n}^{2}$,于是bn=(an-an+1)an+1>$({a}_{n}-{a}_{n}^{2}){a}_{n+1}$$≥\frac{{a}_{n+1}^{2}}{{a}_{n}}$,即$\frac{{b}_{n}}{{a}_{n}}>\frac{{a}_{n+1}^{2}}{{a}_{n}^{2}}$,即可证明.
(III)由${a}_{n+1}≤\frac{1}{4}{a}_{n}$可得:${b}_{n}-\frac{3}{16}{a}_{n}^{2}$=-$({a}_{n+1}-\frac{1}{4}{a}_{n})({a}_{n+1}-\frac{3}{4}{a}_{n})$,可得${b}_{n}≤\frac{3}{16}{a}_{n}^{2}$,因此Tn≤$\frac{3}{16}({a}_{1}^{2}+{a}_{2}^{2}+…+{a}_{n}^{2})$≤$\frac{3}{16}$$({a}_{1}^{2}+\frac{1}{16}{a}_{1}^{2}+…+\frac{1}{1{6}^{n-1}}{a}_{1}^{2})$,利用等比数列的前n项和公式即可得出.
解答 (I)解:∵a1-a2-$\frac{{a}_{2}}{{a}_{1}}$=$\frac{{a}_{1}^{2}-{a}_{1}{a}_{2}-a}{{a}_{1}}$≥$\frac{{a}_{1}^{3}-{a}_{1}{a}_{2}}{{a}_{1}}$=${a}_{1}^{2}-{a}_{2}$$≥{a}_{1}^{3}$>0,
∴a1-a2>$\frac{{a}_{2}}{{a}_{1}}$;
(II)证明:∵an>0,∴$0<\frac{{a}_{n+1}}{{a}_{n}}$$≤{a}_{n}-{a}_{n}^{2}$=-$({a}_{n}-\frac{1}{2})^{2}+\frac{1}{4}$$≤\frac{1}{4}$.
∴${a}_{n+1}≤\frac{1}{4}{a}_{n}<{a}_{n}$.∵0<an<a1<1,${a}_{n+1}<{a}_{n}^{2}-{a}_{n}^{3}$<${a}_{n}^{2}$,
∴bn=(an-an+1)an+1>$({a}_{n}-{a}_{n}^{2}){a}_{n+1}$$≥\frac{{a}_{n+1}^{2}}{{a}_{n}}$,即$\frac{{b}_{n}}{{a}_{n}}>\frac{{a}_{n+1}^{2}}{{a}_{n}^{2}}$,
∴$\sqrt{\frac{{b}_{1}{b}_{2}…{b}_{n}}{{a}_{1}{a}_{2}…{a}_{n}}}$>$\frac{{a}_{2}}{{a}_{1}}•\frac{{a}_{3}}{{a}_{2}}$•…•$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n+1}}{{a}_{1}}$>an+1;
(III)证明:由${a}_{n+1}≤\frac{1}{4}{a}_{n}$可得:${b}_{n}-\frac{3}{16}{a}_{n}^{2}$=(an-an+1)an+1-$\frac{3}{16}{a}_{n}^{2}$=-$({a}_{n+1}-\frac{1}{4}{a}_{n})({a}_{n+1}-\frac{3}{4}{a}_{n})$,且${a}_{n+1}-\frac{1}{4}{a}_{n}≤0$,${a}_{n+1}-\frac{3}{4}{a}_{n}$<0,
∴${b}_{n}≤\frac{3}{16}{a}_{n}^{2}$,
因此Tn≤$\frac{3}{16}({a}_{1}^{2}+{a}_{2}^{2}+…+{a}_{n}^{2})$≤$\frac{3}{16}$$({a}_{1}^{2}+\frac{1}{16}{a}_{1}^{2}+…+\frac{1}{1{6}^{n-1}}{a}_{1}^{2})$≤$\frac{3}{16}×\frac{{a}^{2}(1-\frac{1}{1{6}^{n}})}{1-\frac{1}{16}}$$<\frac{{a}^{2}}{5}$
点评 本题考查了递推式的应用、等比数列的前n项和公式、不等式的性质、“放缩法”,考查了变形能力,考查了推理能力与计算能力,属于难题.
A. | [2,$\frac{4\sqrt{3}}{3}$] | B. | [2,$\frac{3\sqrt{2}}{2}$] | C. | (0,$\frac{4\sqrt{3}}{3}$] | D. | [0,+∞) |
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{8}$ |
A. | 96 | B. | 144 | C. | 240 | D. | 360 |
A. | $\frac{1}{11}$ | B. | $\frac{9}{10}$ | C. | $\frac{10}{11}$ | D. | $\frac{11}{12}$ |
A. | y=-3x+4 | B. | y=x | C. | y=-x+2 | D. | y=x+1 |