题目内容
设单调递减数列{an}前n项和Sn=-
+
an+21,且a1>0;
(1)求{an}的通项公式;
(2)若bn=2n-1•an,求{bn}前n项和Tn.
1 |
2 |
a | 2 n |
1 |
2 |
(1)求{an}的通项公式;
(2)若bn=2n-1•an,求{bn}前n项和Tn.
分析:(1)利用“当n=1时,a1=S1解得a1;当n≥2时,an=Sn-Sn-1”及利用数列{an}是单调递减数列和等差数列的通项公式即可得出.
(2)利用“错位相减法”即可得出.
(2)利用“错位相减法”即可得出.
解答:解:(1)当n=1时,a1=S1=-
+
a1+21,化为
+a1-42=0,又a1>0,解得a1=6;
当n≥2时,an=Sn-Sn-1=-
+
an+21-[-
+
an-1+21],化为(an+an-1)(an-an-1+1)=0,
∵数列{an}是单调递减数列,∴an+an-1≠0,an-an-1=-1.
∴数列{an}是公差为-1的等差数列,∴an=a1+(n-1)d=6-(n-1)=7-n.
(2)∵bn=2n-1•an=(7-n)•2n-1.
∴Tn=6×1+5×21+4×22+…+(8-n)×2n-2+(7-n)×2n-1,
2Tn=6×21+5×22+…+(8-n)×2n-1+(7-n)×2n,
∴Tn=-6+(21+22+…+2n-1)+(7-n)×2n
=-6+
+(7-n)×2n
=-6+2n-2+(7-n)×2n
=(8-n)×2n-8..
1 |
2 |
a | 2 1 |
1 |
2 |
a | 2 1 |
当n≥2时,an=Sn-Sn-1=-
1 |
2 |
a | 2 n |
1 |
2 |
1 |
2 |
a | 2 n-1 |
1 |
2 |
∵数列{an}是单调递减数列,∴an+an-1≠0,an-an-1=-1.
∴数列{an}是公差为-1的等差数列,∴an=a1+(n-1)d=6-(n-1)=7-n.
(2)∵bn=2n-1•an=(7-n)•2n-1.
∴Tn=6×1+5×21+4×22+…+(8-n)×2n-2+(7-n)×2n-1,
2Tn=6×21+5×22+…+(8-n)×2n-1+(7-n)×2n,
∴Tn=-6+(21+22+…+2n-1)+(7-n)×2n
=-6+
2(2n-1-1) |
2-1 |
=-6+2n-2+(7-n)×2n
=(8-n)×2n-8..
点评:本题考查了利用“当n=1时,a1=S1解得a1;当n≥2时,an=Sn-Sn-1”求an、单调递减数列和等差数列的通项公式、“错位相减法”、等比数列的前n项和公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目