ÌâÄ¿ÄÚÈÝ
É踴Êý¦Â=x+yi£¨x£¬y¡ÊR£©Ó븴ƽÃæÉϵãP£¨x£¬y£©¶ÔÓ¦£®£¨1£©Èô¦ÂÊǹØÓÚtµÄÒ»Ôª¶þ´Î·½³Ìt2-2t+m=0£¨m¡ÊR£©µÄÒ»¸öÐé¸ù£¬ÇÒ|¦Â|=2£¬ÇóʵÊýmµÄÖµ£»
£¨2£©É踴Êý¦ÂÂú×ãÌõ¼þ|¦Â+3|+£¨-1£©n|¦Â-3|=3a+£¨-1£©na£¨ÆäÖÐn¡ÊN*¡¢³£Êýa¡Ê (
3 |
2 |
2 |
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ì¼£C2ÉÏ´æÔÚµãA£¬Ê¹µãAÓëµãB£¨x0£¬0£©£¨x0£¾0£©µÄ×îС¾àÀ벻СÓÚ
2
| ||
3 |
·ÖÎö£º£¨1£©ÓÉʵϵÊý·½³ÌÐé¸ù³É¶Ô£¬ÀûÓÃΤ´ï¶¨ÀíÖ±½ÓÇó³ömµÄÖµ£®
£¨2£©·½·¨Ò»£º·ÖnΪÆæÊýºÍżÊý£¬»¯³öaµÄ·¶Î§£¬ÁªÁ¢Ë«ÇúÏß·½³Ì£¬Çó³öaÖµ£¬ÍƳöË«ÇúÏß·½³Ì¼´¿É£®
·½·¨¶þ£ºÓÉÌâÒâ·ÖaµÄÆæżÊý£¬ÁªÁ¢·½³Ì×飬Çó³ö¸´Êý¦Â£¬½â³öa£¬¸ù¾ÝË«ÇúÏߵĶ¨ÒåÇó³öË«ÇúÏß·½³Ì£®
£¨3£©ÉèµãAµÄ×ø±ê£¬Çó³ö|AB|±í´ïʽ£¬¸ù¾Ýx·¶Î§£¬xµÄ¶Ô³ÆÖáÌÖÂÛ0£¼x0¡Ü
£¬x0£¾
ʱ£¬|AB|µÄ×îСֵ£¬²»Ð¡ÓÚ
£¬Çó³öʵÊýx0µÄÈ¡Öµ·¶Î§£®
£¨2£©·½·¨Ò»£º·ÖnΪÆæÊýºÍżÊý£¬»¯³öaµÄ·¶Î§£¬ÁªÁ¢Ë«ÇúÏß·½³Ì£¬Çó³öaÖµ£¬ÍƳöË«ÇúÏß·½³Ì¼´¿É£®
·½·¨¶þ£ºÓÉÌâÒâ·ÖaµÄÆæżÊý£¬ÁªÁ¢·½³Ì×飬Çó³ö¸´Êý¦Â£¬½â³öa£¬¸ù¾ÝË«ÇúÏߵĶ¨ÒåÇó³öË«ÇúÏß·½³Ì£®
£¨3£©ÉèµãAµÄ×ø±ê£¬Çó³ö|AB|±í´ïʽ£¬¸ù¾Ýx·¶Î§£¬xµÄ¶Ô³ÆÖáÌÖÂÛ0£¼x0¡Ü
3
| ||
2 |
3
| ||
2 |
2
| ||
3 |
½â´ð£º½â£º£¨1£©¦ÂÊÇ·½³ÌµÄÒ»¸öÐé¸ù£¬Ôò
ÊÇ·½³ÌµÄÁíÒ»¸öÐé¸ù£¬£¨2·Ö£©
Ôò¦Â•
=m=|¦Â|2=4£¬ËùÒÔm=4£¨2·Ö£©
£¨2£©·½·¨1£º¢Ùµ±nΪÆæÊýʱ£¬|¦Á+3|-|¦Á-3|=2a£¬³£Êýa¡Ê (
£¬ 3)£©£¬
¹ì¼£C1Ϊ˫ÇúÏߣ¬Æä·½³ÌΪ
-
=1£»£¨2·Ö£©
¢Úµ±nΪżÊýʱ£¬|¦Á+3|+|¦Á-3|=4a£¬³£Êýa¡Ê (
£¬ 3)£©£¬
¹ì¼£C2ΪÍÖÔ²£¬Æä·½³ÌΪ
+
=1£»£¨2·Ö£©
ÒÀÌâÒâµÃ·½³Ì×é
?
½âµÃa2=3£¬
ÒòΪ
£¼a£¼3£¬ËùÒÔa=
£¬
´Ëʱ¹ì¼£ÎªC1ÓëC2µÄ·½³Ì·Ö±ðÊÇ£º
-
=1£¬
+
=1£®£¨2·Ö£©
·½·¨2£ºÒÀÌâÒâµÃ
?
£¨2·Ö£©
¹ì¼£ÎªC1ÓëC2¶¼¾¹ýµãD(2£¬
)£¬ÇÒµãD(2£¬
)¶ÔÓ¦µÄ¸´Êý¦Â=2+
i£¬
´úÈëÉÏʽµÃa=
£¬£¨2·Ö£©
¼´|¦Â+3|-|¦Â-3|=2
¶ÔÓ¦µÄ¹ì¼£C1ÊÇË«ÇúÏߣ¬·½³ÌΪ
-
=1£»
|¦Â+3|+|¦Â-3|=4
¶ÔÓ¦µÄ¹ì¼£C2ÊÇÍÖÔ²£¬·½³ÌΪ
+
=1£®£¨2·Ö£©
£¨3£©ÓÉ£¨2£©Öª£¬¹ì¼£C2£º
+
=1£¬ÉèµãAµÄ×ø±êΪ£¨x£¬y£©£¬
Ôò|AB|2=(x-x0)2+y2=(x-x0)2+3-
x2
=
x2-2x0x+
+3=
(x-
x0)2+3-
£¬
x¡Ê[-2
£¬2
]£¨2·Ö£©
µ±0£¼
x0¡Ü2
¼´0£¼x0¡Ü
ʱ£¬|AB|2min=3-
¡Ý
?0£¼x0¡Ü
µ±
x0£¾2
¼´x0£¾
ʱ£¬|AB|min=|x0-2
|¡Ý
?x0¡Ý
£¬£¨2·Ö£©
×ÛÉÏ0£¼x0¡Ü
»òx0¡Ý
£®£¨2·Ö£©£¬
. |
¦Â |
Ôò¦Â•
. |
¦Â |
£¨2£©·½·¨1£º¢Ùµ±nΪÆæÊýʱ£¬|¦Á+3|-|¦Á-3|=2a£¬³£Êýa¡Ê (
3 |
2 |
¹ì¼£C1Ϊ˫ÇúÏߣ¬Æä·½³ÌΪ
x2 |
a2 |
y2 |
9-a2 |
¢Úµ±nΪżÊýʱ£¬|¦Á+3|+|¦Á-3|=4a£¬³£Êýa¡Ê (
3 |
2 |
¹ì¼£C2ΪÍÖÔ²£¬Æä·½³ÌΪ
x2 |
4a2 |
y2 |
4a2-9 |
ÒÀÌâÒâµÃ·½³Ì×é
|
|
½âµÃa2=3£¬
ÒòΪ
3 |
2 |
3 |
´Ëʱ¹ì¼£ÎªC1ÓëC2µÄ·½³Ì·Ö±ðÊÇ£º
x2 |
3 |
y2 |
6 |
x2 |
12 |
y2 |
3 |
·½·¨2£ºÒÀÌâÒâµÃ
|
|
¹ì¼£ÎªC1ÓëC2¶¼¾¹ýµãD(2£¬
2 |
2 |
2 |
´úÈëÉÏʽµÃa=
3 |
¼´|¦Â+3|-|¦Â-3|=2
3 |
x2 |
3 |
y2 |
6 |
|¦Â+3|+|¦Â-3|=4
3 |
x2 |
12 |
y2 |
3 |
£¨3£©ÓÉ£¨2£©Öª£¬¹ì¼£C2£º
x2 |
12 |
y2 |
3 |
Ôò|AB|2=(x-x0)2+y2=(x-x0)2+3-
1 |
4 |
=
3 |
4 |
x | 2 0 |
3 |
4 |
4 |
3 |
1 |
3 |
x | 2 0 |
x¡Ê[-2
3 |
3 |
µ±0£¼
4 |
3 |
3 |
3
| ||
2 |
1 |
3 |
x | 2 0 |
4 |
3 |
5 |
µ±
4 |
3 |
3 |
3
| ||
2 |
3 |
2
| ||
3 |
8
| ||
3 |
×ÛÉÏ0£¼x0¡Ü
5 |
8
| ||
3 |
µãÆÀ£º±¾Ì⿼²é¸´ÊýµÄ»ù±¾¸ÅÄ¹ì¼£·½³Ì£¬Ö±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬¿¼²é·ÖÀàÌÖÂÛ˼Ï룬ת»¯Ë¼Ï룬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿