题目内容
【题目】用如图所示的几何体中,四边形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1 , E是AC的中点.
(1)求证:A1E∥平面BB1C1C;
(2)若AC=BC,AB=2BB1 , 求二面角A﹣BA1﹣E的余弦值.
【答案】
(1)证明:取AB的中点F,连结EF,A1F.
∵AB=2A1B1,∴BF=A1B1,
又A1B1∥AB,∴四边形A1FBB1是平行四边形,
∴A1F∥BB1,∵E,F分别AC,AB的中点,∴EF∥BC,
又EF平面A1EF,A1F平面A1EF,EF∩A1F=F,BC平面BB1C1C,BB1平面BB1C1C,BC∩BB1=B,
∴平面A1EF∥平面BB1C1C.
又A1E平面A1EF,∴A1E∥平面BB1C1C
(2)解:(2)连结CF,则CF⊥AB,
以F为原点,FC为x轴,FB为y轴,FA1为z轴,建立空间直角坐标系,
则A(0,﹣1,0),A1(0,0,1),B(0,1,0),C( ,0,0),
∴E( ,﹣ ,0), =(0,﹣1,1), =( ,﹣ ,0),
设平面A1BE的一个法向量为 =(x,y,z),
,取y=1,得 =( ,1,1),
平面ABA1的法向量 =(1,0,0),设二面角A﹣BA1﹣E的平面角为θ,
,则cosθ= .
∴二面角A﹣BA1﹣E的余弦值为 ,
【解析】(1)取AB的中点F,连结EF,A1F.则可通过证明平面A1EF∥平面BB1C1C得出A1E∥平面BB1C1C;(2)连结CF,则CF⊥AB,以F为原点,FC为x轴,FB为y轴,FA1为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣BA1﹣E的余弦值.
【考点精析】本题主要考查了直线与平面平行的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能正确解答此题.
【题目】微信是现代生活进行信息交流的重要工具,随机对使用微信的60人进行了统计,得到如下数据统计表,每天使用微信时间在两小时以上的人被定义为“微信达人”,不超过2两小时的人被定义为“非微信达人”,己知“非微信达人”与“微信达人”人数比恰为3:2.
(1)确定x,y,p,q的值,并补全须率分布直方图;
(2)为进一步了解使用微信对自己的日不工作和生活是否有影响,从“微信达人”和“非微信达人”60人中用分层抽样的方法确定10人,若需从这10人中随积选取3人进行问卷调查,设选取的3人中“微信达人”的人数为X,求X的分布列和数学期望.
使用微信时间(单位:小时) | 频数 | 频率 |
(0,0.5] | 3 | 0.05 |
(0.5,1] | x | p |
(1,1.5] | 9 | 0.15 |
(1.5,2] | 15 | 0.25 |
(2,2.5] | 18 | 0.30 |
(2.5,3] | y | q |
合计 | 60 | 1.00 |